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SUMMARY

Accuracy of implicit path enumeration technique (IPET), which statically estimates the worst-case
execution time of a program using integer linear programming, relies on flow information captured
as flow facts. Unfortunately, flow facts are inadequate for capturing complex and often subtle path
constraints such as causalities. Manual annotation often introduces many disjunctions, and performance
of IPET computation suffers significantly. This paper proposes a technique of encoding a subset of path
constraints into flow facts. The technique has advantages over conventional approaches: (1) translation
process is fully automated and (2) efficient IPET computation is possible because generated flow facts are
compact in that they contain at most one disjunction. To demonstrate the effectiveness of our technique,
a software tool was implemented to automatically generate flow facts for the subset of path constraints
and case study has been conducted using public benchmark suites, GNU openSSH codes, and Korea
multi-purpose satellite (KOMPSAT-1) software. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate estimation of the worst-case execution time (WCET) is crucial when verifying the correct-
ness of the real-time software and scheduling its tasks [1]. In fact, many safety-critical systems
mandate reliability and safety demonstration, and WCET analysis is an important component in
determining if timing requirements can be met. Traditional measurement-based techniques execute
software with a set of test cases and choose the largest execution time as the WCET estimate. They,
however, cannot guarantee the safeness of the estimate because testing of all the feasible paths is
generally impossible.
Static methods approximateWCET by analyzing source codes without executing them. Examples

include tree-based techniques [2–4], path-based techniques [5,6], and implicit path enumeration
technique (IPET) [7–9]. Although static WCET methods are safe and automated, they usually
overestimate the results because flow information derived statically is often incomplete and over-
simplified [10]. If WCET estimates are overly pessimistic, valuable CPU resources will be wasted.
Furthermore, to guarantee the fulfillment of real-time requirements, more expensive (or power
consuming) systems than necessary might have to be deployed. To overcome such limitations,
some approaches [11–14] relied on user annotation of additional path constraints, and techniques
proposed in references [6,15–17] used data flow analysis to extract such constraints automatically.
Among the static methods, IPET uses flow facts, conjunctive linear constraints on the execution

counts of basic blocks, to represent flow information. Integer linear programming (ILP) solvers
then calculate the maximum execution time as satisfying all the flow facts. Thus, all additional path
constraints should be presented in flow facts in order to be applied in IPET computation.
Encoding path constraints into flow facts involves two steps. First, path constraints are rewritten

in a superset of flow facts, flow predicates, which may include disjunctions. Unfortunately, this
step cannot be completely automated because complex path constraints are difficult to capture as
constraints on the execution counts alone.
Next, disjunctions included in the flow predicates must be removed since generic ILP solvers

accept only conjunctive constraints. Li and Malik [7] translated flow predicates into disjunctive sets
of flow facts and computed all local maximums for the sets to determine the longest execution time.
This approach, though feasible, is apparently inefficient because predicates for path constraints
containing many disjunctions increase the number of sets exponentially.
This paper focuses on two types of path constraints, positive and negative dependencies, among

basic blocks. The former indicates that the execution of a sequence of basic blocks triggers that of
the other basic blocks. The latter refers to a sequence of basic blocks that cannot be simultaneously
included in valid execution paths.
This paper reports that a subset of such dependencies can be automatically and effectively trans-

lated into flow predicates. The authors have developed an algorithm to statically determine whether
a path constraint belongs to such a subset. Furthermore, the resulting predicates are guaranteed to
contain no disjunctions when specifying positive dependencies and at most one disjunction for each
negative dependency. Thus, the number of IPET calculations is significantly reduced because only
the negative dependencies containing a disjunction need to be partitioned.
As an application of the proposed technique, a software tool was implemented to automatically

generate functional flow facts from an input code. The tool uses abstract interpretation technique
[16,18] to identify infeasible paths, performs path slicing technique [19] to translate the paths into
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dependencies, and generates additional flow facts for them. Experiments conducted on benchmark
suites, OpenSSH, and satellite control software revealed that about 30% of the infeasible paths
could be translated into flow facts fully automatically.
This paper is organized as follows. Sections 2 and 3 briefly describe research backgrounds and

explain IPET. Section 4, describing the main contributions of this paper, explains how to encode a
subset of path constraints into flow facts and Section 5 demonstrates how to automate the process.
The paper presents experimental results in Section 6 and concludes in Section 7.

2. PRELIMINARIES

This paper uses a C language-like imperative language for the presentation. Figure 1 shows an
example code and its control flow graph (CFG). A program P consists of basic blocks (Blks),
maximal sequences of statements where all the statements are executed if the first statement is
executed, and control flows among them (E : Blks×Blks). In the figure, basic blocks B1 through B8
are labeled in CFG nodes. Each block has a sequence of statements (Stmts) and stmt of(B,i) :
Blks×N→Stmts refers to the ith statement of basic block B‡.

2.1. Linear (time) structures for a program

An execution path (or a run) of a program P is a sequence of basic blocks that starts with an entry
block (bentry ) and passes blocks along the control flows E . A finite path finishes at an exit block
(Bexit) and an infinite path repeats loops infinitely. To avoid verbose formal notations, the remaining
sections assume a program P= (Stmts, Blks, E, bentry, Bexit).
This paper treats all the execution paths as infinite ones uniformly; finite runs are transformed

to semantically equivalent infinite ones by concatenating an infinite sequence of dummy blocks
B�B� . . . at the ends of runs. For example, a finite run �=B1B2B6B7B8 is transformed to an infinite
run ��=B1B2B6B7B8B�B� . . . . All execution paths of a program can be regarded as infinite paths,
and they are termed as the language of a program P , L(P).
With this setup, the semantics of a program can be defined as linear time structures [20] as

follows. An infinite execution path ��=b0b1 . . . of a program P can be represented as a linear
time structure M��= (Q,��, L), where the states Q are basic blocks Blks. To specify the path
constraints among basic blocks, this paper uses atomic propositions apbi , which are true only at
the corresponding block bi as labels L . That is, atomic propositions APBlks are

⋃
Bk∈Blks{apBk}

and labeling function L(Bi) returns {apBi}, e.g. apB2 ∈ L(B2) and apB3 /∈L(B2). For simplicity of
presentation, we use bi and apbi interchangeably if apparent.

2.2. Path constraints and linear temporal logic (LTL)

Temporal logic provides a formal system for qualitatively describing and reasoning about how the
truth values of assertions change over time [20]. Temporal logic has been widely used in specifying
and reasoning properties of reactive systems.

‡The set N is non-negative integers including zero. As a subset, N≤k denotes non-negative integers less than or equal to k.
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(a) (b)

Figure 1. An example program: (a) an example code and (b) CFG of (a).
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Figure 2. Linear temporal logic: (a) syntax of linear temporal logic. Symbol p is an atomic proposition and
�,� are LTL formulas and (b) temporal operators. Black dots are entry blocks.

This paper uses LTL to formally define path constraints, requisites for valid execution paths
of P . In Figure 1(a), block B7 cannot be executed if B4 was executed earlier because variables
a and b remain non-negative since then. This paper formally defines such constraints in terms of
LTL formulas accepting only valid execution paths over linear structures for a program.
An LTL formula for a path constraint is built up with atomic propositions APBlks , boolean

connectives (∧, ∨,¬), and temporal operators Fp (sometimes p),Gp (always p),Xp (next time p),
and pUq (p until q) as presented in Figure 2(a). By mixing the boolean and temporal operators in
nested sub-formulas, LTL provides enough expressive power to capture the various path constraints
precisely. Figure 2(b) illustrates the meaning of temporal operators briefly: temporal operator Fb
accepts execution paths where block b occurs at a future moment and Gb accepts paths only
repeating b forever. An execution path whose second block is b satisfies Xb and a path repeating
block c until b is executed satisfies cUb.
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The semantics of an LTL formula � can be formally defined as linear structures satisfying it.
The satisfaction relation ��� holds if a linear structure M= (Q,��, L) (or an execution path ��)
satisfies �. Definition 1 inductively formalizes � relation. In the definition, ��

k is the kth state, i.e.
��
k =��(k) and postk(��) is the postfix of �� starting from the kth state, i.e. ��

k ��
k+1 . . . .

Definition 1 (Linear temporal logic). let p be an atomic proposition, �,� be LTL formulas, and
M= (Q,��, L) be a linear time structure.

• ���p iff p∈ L(��
0 )

• ����∨� iff ���� or ����
• ����∧� iff ���� and ����
• ���¬� iff ��

��
• ���F� iff ���� or post1(��)�F�
• ���G� iff ���� and post1(��)�G�
• ���X� iff post1(��)��
• ����U� iff ∃ j : posti(��)��∧{∀k< j : postk(��)��}

In Figure 1, B1B2 . . .B6B7B8�FB8 holds because B8 is eventually executed in the all path§ .
Likewise, a formula �=G(B4→G¬B7) denotes that B7 is not executed if B4 is executed earlier
and, therefore, B1B2B3B4B2B6B7B8��.

3. IMPLICIT PATH ENUMERATION TECHNIQUE

IPET-based WCET estimation consists of three major phases: program flow analysis, low-level
analysis, and calculation. The program flow analysis extracts flow information on possible execution
paths and encodes them into flow facts. The low-level analysis determines the number of CPU cycles
that each basic block takes to execute. Both the static technique and measurement are applicable
for this phase [21,22]. In this phase, hardware-dependent characteristics (e.g. pipeline [23], cache
[24,25], and branch prediction [26–28]) must be taken into consideration to obtain accurate results.
For example, the execution time of a block would be less if referenced variables remain in the
cache, and incorrect branch prediction would delay execution. Finally, an ILP solver computes a
WCET estimate using flow facts and timing information.
In IPET, structural flow facts denote control flow information. Let �i and f kj denote the number

of times a basic block Bi is executed and a control flow from Bj to Bk is taken, respectively. In
Figure 1, block B2 has three incoming edges (from B1, B4, and B5) and two outgoing edges (to B3
and B6). Thus, the execution count of B2 (�2) must be equal to the sum of the execution counts of
all the incoming edges ( f 21 + f 24 + f 25 ) as well as that of the outgoing edges ( f 32 + f 62 ) as shown in
Equation (2) of Figure 3(a).
Structural flow facts are, unfortunately, insufficient to compute a WCET estimate. They contain

no information on loop bounds. In the example code, B1 is executed once in the function and
the loop is executed three times. Flow facts (9)–(11) represent such flow information. Note that

§FB8 abbreviates FapB8 as mentioned.
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(a) (b)

Figure 3. Flow facts for finiteness: (a) structural flow facts and (b) flow facts for finiteness.

Table I. The result of ILP solver.

B1 B2 B3 B4 B5 B6 B7 B8 WCET

�(Bi) 7 3 3 7 3 3 3 10
(S,W) 1 4 3 3 0 1 1 1 65
(S′,W′) 1 4 3 3 0 1 0 1 62

flow fact (10) set the boundary of B2’s execution count to 4 to include the exit transition to B6.
This paper assumes that such finiteness flow facts have already been derived using the existing
techniques [13,29,30].
Given the above assumptions, the proposed technique is applied to a bounded program P=

(Stmts,Blks, E,bentry, Bexit, V :Blks→N) whose execution counts of nodes b are bounded to finite
numbersV(b). Execution paths of a bounded program can be represented as flow facts on structural
information and finiteness.
A bounded program P defines only finite execution paths from the initial node (bentry ) to a final

node in Bexit because all execution counts of basic blocks are bounded. In a run �=b0b1b2 . . .bn
of P, a block b may occur at most V(b) times. That is, |�|b≤V(b) where |�|b∈Blks denotes the
occurrence number of the node b in the sequence �. Note that the semantics of a bounded program
P can also be given in linear structures using B� analogous to a program P .
If transition times between the basic blocks are ignored, the total execution time of a path is the

sum of time necessary for executing each basic block b, �(b), as many times as its occurrence in
the sequence, �b. The objective function T(P), therefore, becomes

T(P)= ∑
b∈Blks

�(b)×�b

WCET is the maximum value of this objective function satisfying all the given flow facts, namely,
WCET(P)=max( T(P) ). ILP solves this maximization problem and returns a WCET estimate
W and a solution S indicating how many times each block is executed. In Table I, the result
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Figure 4. Functional flow information.

(S,W) illustrates the WCET estimate, 65 cycles, derived using only structural and finiteness flow
facts (1)–(11), while assuming that execution of Bi takes �(Bi) CPU cycles.
Unfortunately, the estimate W shown in Table I is not tight enough since the chosen WCET

path, where B4 and B7 are supposed to be executed thrice and once, respectively, is infeasible:
block B7 is executed only when variable b has a negative value, but b remains non-negative if B4
is executed. Such an infeasible path problem [31] occurred because static analysis failed to fully
capture semantic dependencies. Had path constraint in flow predicate (13) in Figure 4 showing that
‘B7 is never executed if B4 were executed at least once’ been included¶ , ILP solver would not have
picked such a path as the WCET solution.
Furthermore, as the value of input parameter a is never updated, the truth of loop condition at line

6, (a≥0), never changes. Thus, valid execution paths must never include B4 and B5 simultaneously
as flow predicate (12) in Figure 4 indicates. More subtle dependencies involve B5 and B7. Flow
predicate (14) in Figure 4 denotes that if block B5 had been executed at least once, B7 must also
be included in valid execution paths.
Inclusion of the additional functional flow information reduces the WCET estimate from 65 to

62 cycles as (S′,W′) in Table I. The more the functional flow information available, the more the
infeasible paths can be eliminated and the tighter the WCET estimate becomes.
Extracting functional flow information and capturing them as equivalent flow predicates are

neither trivial nor always possible. Data flow analysis using abstract interpretation [18] with respect
to signs of valuesmay help elicit the above functional flow facts. However, not all of such information
can be derived automatically, and manual annotation is often needed as a supplement.
Not all of the functional flow information elicited can be translated into flow predicates, either.

Constraints on execution counts are not expressive enough to capture ordering relation among basic
blocks in dependency. For example, predicate (�3≥1→�4≥1) does not accurately capture the
constraint that the execution of B3 must always be followed by that of B4 because an execution
path in which B4 occurs prior to B3 would also satisfy this predicate.
In addition, disjunctions contained in flow predicates decrease the performance of IPET signifi-

cantly. Because generic ILP solvers accept only conjunctive linear equations, the separation tech-
nique [7] splits flow predicates into disjunctive sets of flow facts. These sets of flow facts are
calculated separately to identify local maximums, and the longest execution time among them is
selected as the WCET. For example, flow facts (12)–(14) can be divided into eight sets of flow
facts including a flow facts set {(1), (2), . . ., (12),�4=0,�5=0} where the three left disjuncts of
the equations is contained.

¶Predicate (�4≥1→�7=0) can be rewritten as an equivalent equation (�4=0∨�7=0) including a disjunction since all execution
counts are non-negative integers.
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It is apparently inefficient to apply the separation technique to predicates containing many
disjunctions because the number of combinations increases exponentially. Knowledge about the
program behavior may simplify flow predicates. For example, a predicate (�4=3∧�7=0), requiring
only one ILP calculation, effectively replaces predicates (12)–(14), and the same WCET estimate,
62 cycles, would be returned.

4. ENCODING OF PATH CONSTRAINTS FOR IPET

4.1. Path constraints

This paper focuses on two representative types of path constraints: positive and negative depen-
dencies among basic blocks. These dependencies are well-known and popular patterns of path
constraints [32]. Moreover, they are theoretically primitive in that all the other constraints can be
represented as a set of infeasible paths, which are always transformable into negative dependencies.
Functional flow information (13) shown in Figure 4 is an example of a negative dependency

since inclusion of B4 in any valid execution path eliminates B7. The positive dependency, shown
in (14) in Figure 4, means that execution of B5 should be followed by that of B7 later. This paper
denotes these constraints as B4 ��B7 and B5�B7, respectively. More rigorously, both types of
constraints consist of triggering blocks and a consequence block, represented as ‘t1◦ t2◦· · ·◦ tn�c’
or ‘t1◦ t2◦· · ·◦ tn ��c’. Concatenation operators ‘◦’ are omitted when apparent.
The semantics of a dependency in P can be expressed in an LTL formula accepting only runs

satisfying the dependency. Let L(P) be the language of a program. Given an LTL formula �,
formula preserving paths (or formula paths) L�(P) is a set of execution paths that satisfies the
formula �, namely {��∈L | ����}. The formal semantics of positive and negative dependencies
are defined as follows.

Definition 2 (Positive dependency). A positive dependency t1t2 . . . ti�c of P is a set of formula
paths L�(P), where �=G {t1∧F(t2∧F(· · ·(ti−1∧Fti )))→F(t2∧F(· · ·(ti−1∧F(ti∧Fc))))}‖.
Definition 3 (Negative dependency). A negative dependency t1t2 . . . ti ��c is a set of formula paths
L�(P), where �=G {t1∧F(t2∧F(· · ·(ti−1∧Fti )))→F(t2∧F(· · ·(ti−1∧F(ti∧G(¬c))))}.
The only difference between the above definitions is the terms Fc and G¬c included in the

formulas. The former requires that node c must occur later in the sequence, while the latter denotes
that node c must not. The remaining terms specify the order among triggers.

4.2. Translation of simple path constraints

A dependency can be rewritten in a flow predicate if nodes included in the constraint are always
executed in a certain order. For example, formula path G(�1≥1→F�3≥1)∗∗ denotes a positive

‖The formula corresponds to the response chain pattern presented by Dwyer et al. [32].
∗∗B1 in the dependency B1�B3 means an occurrence of the block B1, and it therefore can be represented as �1≥1.
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dependency B1�B3 including only one triggering basic block. Temporal operator F may be
removed from the formula because B1 is always executed prior to B3 in all valid execution paths
of the program as shown in Figure 1. Temporal operator G can also be omitted because (�1≥1→
�3≥1) is an invariant in which execution counts do not vary once an execution path is selected.
Therefore, flow predicate (�1≥1→�3≥1) is sufficient. This example illustrates that possibility of
translating path constraints into flow predicates depends on the structure of P .

Definition 4 (Prior node). Node p precedes q if p→� q∧q�
� p, where p→� q⇐⇒ (p,q)∈ E�.

Definition 4 is essential when enforcing an ordering relationship between two nodes. Node p
precedes q if p never occurs after q in all the valid execution paths of P . In Figure 1, as B1 precedes
B4, flow predicates on the path constraints between B1 and B4 need not explicitly specify the order
between them. On the contrary, B4 does not precede B5, and flow predicates on B4 and B5 must
include the ordering information. Note that the notion of prior node does not necessarily require the
occurrence of nodes; that is, B4 still precedes B7 even though some paths may not contain either
or both of the nodes.
Lemma 4.1 defines the condition under which temporal operators G and F may be removed

from the LTL formula corresponding to a positive dependency. Assume that there is a simple path
constraint G(t→Fc) and t precedes c. If an execution path w contains both nodes, the order
between them can be statically determined since t precedes c. Temporal operator F, therefore, can
be removed from the formula safely. Predicate �t≥k is an invariant because the total execution
counts, �t , do not vary in an execution path. Therefore, the operatorGmay be omitted when applied
to execution counts. Similarly, Lemma 4.2 is for a negative dependency.

Lemma 4.1. If node t precedes c, w�G(t→Fc) if and only if |w|t ≥1→|w|c≥1.
Proof of Lemma 4.1. Appendix A.1. �

Lemma 4.2. If node t precedes c, w�G(t→G¬c) if and only if |w|t ≥1→|w|c=0.

Proof of Lemma 4.2. Appendix A.2. �

For instance, path constraints B4 ��B7 and B5�B7 of Figure 1 are equivalent to predicates
(�4≥1→�7=0) and (�5≥1→�7≥1), respectively, since B4 and B5 are prior nodes to B7. On the
other hand, B4�B5 is not equivalent to (�4≥1→�5≥1) since B4 is not a prior node to B5: this
predicate is satisfied by an execution path in which B5 never occurs after B4.
Unfortunately, predicates defined in Lemmas 4.1 and 4.2 each contain a disjunction as a form of

implication. They, therefore, cannot be used directly in the IPET calculation without applying the
separation technique [7]. Nevertheless, the disjunction for a positive dependency can be eliminated,
and a single flow fact is sufficient to represent the dependency.
Figure 5 illustrates the basic idea. Black and white dots depict solutions to (�5≥1→�7≥1).

All the other points, non-solutions, are marked ×. However, information on finiteness, V(B5)=
3 and V(B7)=1, limits the solution space only to the black dots. The shaded convex area in
Figure 5 contains only and all the solutions while containing none of the × marks. Thus, the union
of three linear constraints (�5≤3) , (�7≤1), and (�5≤3 ·�7) enclosing the area is equivalent to
(�5≥1→�7≥1), in that both have the same solution space (�5,�7). Note that this holds since �i
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Figure 5. Solution space for B5�B7 : �5≤3·�7.

(a) (b)

Figure 6. Solution spaces of negative dependencies: (a) B4 ��B7 : 3−3·�7≥�4 and
(b) B4 ��B7 : 3−3·�7≥�4∨3−3·�4≥�7.

are non-negative integers. Because the first two constraints correspond to the finiteness property of
B5 and B7, (�5≤3 ·�7) is the only flow fact to be added to encode the path constraint B5�B7.
This idea can be generalized in that positive dependency t�c can be translated into a flow fact

(�t ≤V(t)·�c) if t precedes c, because a predicate for a positive dependency always has a convex
solution space. Note that a concave region requires disjunctions since it is the union of convex
areas.
Figure 6(a) illustrates how flow facts corresponding to negative dependencies can be derived.

Negative dependency B4 �� B7 can be rewritten as (�4≥1→�7=0) or (�4=0∨�7=0). The solu-
tion space is shown in black dots when V(B4)=3 and V(B7)=1, and it is covered by a convex
area enclosed by constraints (�4≤3), (�7≤1), and (3−�4≥3 ·�7).
Unfortunately, this idea cannot be generalized to all negative dependencies since solution space

for a negative dependency is not guaranteed to be a convex; it may be a concave. For example, if
V(B4)=V(B7)=3, the solution space becomes a concave region as shown in Figure 6(b). This
region is the union of two convex areas each of which is represented by the following constraints:
(i) {(�7≤3−3 ·�4), (0≤�4≤1), (0≤�7≤3)} and (ii) {(�4≤3−3 ·�7), (0≤�4≤3), (0≤�7≤1)}.
Thus, two disjunctive linear constraints (�4≤−3 ·�7+3) and (3−3 ·�4≥�7) must be added.
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In general, a negative dependency t ��c is equivalent to (�t ≤V(t)·(1−�c))∨(�c≤V(c)·
(1− t)), if node t precedes c. If either V(c)=1 or V(t)=1 holds as Figure 6(a), the solution
space for a negative dependency becomes a convex area because one area corresponding to
(c≤V(c)·(1− t)) includes the other area (t≤V(t)·(1−c)) or vice versa; that is, the predicate can
be simplified as a flow fact (�t≤V(t)·(1−�c)) if V(c)=1, or (�c≤V(c)·(1−�t )) if V(t)=1.
The example in Figure 6(a) is the case requiring only one flow fact (�4≤3 ·(1−�7)).
Note that the solutions of a negative dependency t ��c can be represented as an alternative

predicate (�t=0∨�c=0). This predicate containing one disjunction cannot be reduced to a single
flow fact even though the same condition V(t)=1∨V(c)=1 holds.
The following theorems define the simplified versions of flow predicates corresponding to the

Lemmas 4.1 and 4.2, respectively.

Theorem 4.1. A positive dependency t�c is equivalent to (�t ≤V(t)·�c) if node t precedes c.
Proof of Theorem 4.1. Appendix A.3. �

Theorem 4.2. A negative dependency t ��c is equivalent to (�t≤V(t)·(1−�c))∨(�c≤V(c)·(1−
t)), if node t precedes c.

Proof of Theorem 4.2. Appendix A.4. �

4.3. Encoding of complex path constraints

The proposed technique on the translation of simple path constraints can be generalized with
multiple triggers, namely, t1t2 . . . tn�c. As all the triggering blocks must be executed in specific
order, the notion of dominance, used in compilers and data flow analysis [33,34], is applicable.
Occurrence of one node guarantees the prior occurrence of the other node if there exists a dominance
relationship between them.

Definition 5 (Dominance). Let a bounded program be P= (Stmts,Blks, E,bentry, Bexit,V). Node
qi ∈Blks dominates q j ∈Blks if and only if every prefix of execution paths of P from q0 to q j
contains qi .

If all the consecutive pairs of triggers satisfy dominance relation in the specified order, a sequence
of triggers is replaced with the last trigger. That is, t1◦ t2◦· · ·◦ tn�c is reduced to tn�c if t1
dominates t2, t2 dominates t3, and so on. Because the resulting path constraint has a single trigger,
the predicate for simple path constraints is sufficient to represent it. Lemma 4.3 presents this idea.

Lemma 4.3. Path constraints t1◦ t2◦· · ·◦ tn�c and t1◦ t2◦· · ·◦ tn ��c are equivalent to the path
constraint tn�c and tn ��c, respectively, if ∀i∧(1≤ i≤n−1): ti dominates ti+1.
Proof of Lemma 4.3. Appendix A.5. �

Lemma 4.3 allows the conversion of complex path constraints containing multiple triggers into
flow facts containing at most one disjunction. Theorems 4.3 and 4.4 generalize the Theorems 4.1 and
4.2 with respect to Lemma 4.3. Using these theorems, B1B5�B7 can be translated into (�5≤3 ·�7)
since B1 dominates B5 and B5 precedes B7. Similarly, B1B4 ��B7 is encoded as (3−3 ·�7≥�4).
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Theorem 4.3. A positive dependency t1 . . . tn�c is equivalent to (�tn ≤V(tn)·�c), if the node t is
a prior node to the node c and ∀i∧(1≤ i≤n−1) : ti dominates ti+1.
Proof of Theorem 4.3. Trivially true by Lemma 4.3 and Theorem 4.1. �

Theorem 4.4. A negative dependency t1 · · · tn ��c is equivalent to (�tn ≤V(tn)·(1−�c))∨(�c≤
V(c)·(1−�tn )), if the node tn is a prior node of c and ∀i∧(1≤ i≤n−1) : ti dominates ti+1.
Proof of Theorem 4.4. Trivially true by Lemma 4.3 and Theorem 4.2. �

5. AUTOMATIC ELICITATION OF FUNCTIONAL FLOW FACTS

Tight integration of the proposed techniquewith IPET requires two steps: (i) identification of positive
and negative dependencies and (ii) conversion of the resulting dependencies to flow facts. This
section presents the techniques with algorithms applicable to these steps and tool implementation
issues.

5.1. Automated dependency identification

Traditionally, identification of dependency relied on time-consuming and potentially error-prone
user annotation. Automatic identification of a complete set of dependency is theoretically unde-
cidable. The proposed technique automatically derives partial information, which is still useful to
make estimation more accurate and to alleviate annotation efforts.
Figure 7 shows an overview of the proposed approach. In the figure, the automatic dependency

identifier utilizes the information on infeasible paths to identify negative dependencies. Gustafsson
and Ermedahl [16] proposed a static analysis technique to automatically identify loop bounds. They
unfolded loops and performed flow- and context- sensitive data flow analysis based on abstract
interpretation [18]. This technique is still applicable to identify infeasible paths with minor modi-
fication.
Unfortunately, the resulting infeasible paths tend to be lengthy and verbose, which are inadequate

for identifying the dependency underlying it. Thus, Path Slicer eliminates irrelevant statements (or

Dependencies

Infeasible Path
Identifier

Infeasible
Paths

Path
Slicer

Automated Dependency Identifier

Source
Codes

Systematic
Flow Facts

Encoder

Additional
Functional
Flow Facts

Figure 7. Approach on elicitation of functional flow facts.
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blocks) to make the identification of dependency more effective. The Path Slicer, based on research
reported in [19], summarizes infeasible paths into abstract ones using sets of post-dominants and
reachability relations for each statement.
An abstract infeasible path is equivalent to a negative dependency if the remaining statements

of a path are grouped into basic blocks. For instance, an abstract infeasible path passing through
basic blocks B1B2B3 . . .Bn corresponds to the negative dependency B1B2B3 . . . ��Bn because basic
blocks in an infeasible path cannot be executed simultaneously.

5.2. Systematic encoding of functional flow facts

Systematic flow facts encoder implements Theorem 4.4 by checking whether the translatability
conditions hold and generating the corresponding flow facts. While testing the translatability, it uses
information on dominance (DOM) and reachability relations (REACH). Information on reachability
relation generated by Path Slicer is used to avoid redundant computation.

Algorithm 1 Algorithm for flow fact encoder for negative dependency

Input P=(Stmts, Blks, E , bentry , Bexit, V)
Output A flow predicate for a negative dependency
1: procedure FLOWFACTENCODERNEG(tg,c)

// tg : list of triggering blocks t0t1 · · · tn ,
// c : a consequence block.

2: �← t0t1 . . . tnc
3: B← a set of all the involving blocks in the list �.
4: if ISDOMINATE(tg) = true ∧ tn /∈ REACH(c) then

// if lemma 4.3 and theorem 4.2 is satisfied
5: if V(tn)≤1 then
6: return

(
�c≤V(c)·(1−�tn )

)
7: else if V(c)≤1 then
8: return

(
�tn ≤V(tn)·(1−�c)

)
9: else
10: return

(
�tn ≤V(tn)·(1−�c)

) ∨ (�c≤V(c)·(1−�tn )
)

11: end if
12: else

// ISDOMINATE(tg) �= true or tn does not precede c
13: return null// naive encoding of the negative dependency
14: end if
15: end procedure

Algorithm 1 shows an implementation of Flow Fact Encoder for a negative dependency. The
algorithm tests the translatability of a given dependency at line 4. If the test is passed, it generates
flow facts for the dependency according to the bound of blocks at lines 6, 8, and 10. Algorithm 1
utilizes function ISDOMINATE() in Algorithm 2 to determine the translatability. In the algorithms,
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Algorithm 2 Algorithm for ISDOMINATE(tg)

Input DOM: Blks→2Blks // Dominant sets
1: procedure ISDOMINATE(tg)

// a list of triggering blocks tg= t0t1 . . . tn
2: old← t0, i←1
3: while i≤n do
4: if old /∈DOM(tn) then
5: return false
6: end if
7: old← ti , i← i+1
8: end while
9: return true
10: end procedure

the two sets DOM and REACH are fix-point solutions of the following equations, where preds(b)
and succs(b) are predecessors and successors of block b.

DOM(b0)= {b0} ∀b∈ Blks.REACH(t)={t}

DOM(b)=
( ⋂

p∈preds(b)
DOM(p)

)
∪{b}, REACH(n)=

( ⋃
p∈succs(n)

REACH(p)

)

These equations can be computed using generic worklist algorithms [35].

5.3. An example: automatic generation of flow facts

Figures 8 shows an example code and an concrete infeasible path s2s3s7 . . .s19s20 generated by
Infeasible Path Identifier, where si is the statement at the i th line in the code. In the infeasible path,
the condition at line 19 is never satisfied. This infeasible path corresponds to negative dependency
� :B1B3 . . .B8 ��B9 because stmt of(B1,0)= s2,stmt of(B1,1)=s3,stmt of(B3,0)=
s7, . . . . For the dependency to be encoded into flow facts, it must satisfy the following condi-
tions (Theorem 4.4): (1) blocks B1–B8 satisfy the dominant relation and (2) B8 precedes B9.
Unfortunately, this is not the case because the first condition does not hold.
However, some statements included in the path are irrelevant with respect to the condition (c>0)

at line 19. Because the loop, lines 10–18, does not change the value of variable c, statements s10–s18
can be safely removed from the path, thereby resulting in a negative dependency�′ :B1B3B8 ��B9.
To generate more compact negative dependencies automatically, Path Slicer generates an abstract

path from a concrete one while preserving its property on feasibility; that is, a concrete path is
(in)feasible if its sliced counterpart is (in)feasible. While traversing the infeasible path in Figure 8(b),
Path Slicer removed the shaded nodes from the path and returned even more compact negative
dependency �′ :B1B3 ��B9. It satisfies the translatability conditions and, therefore, functional flow
fact �9≤(1−�3) is generated.
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(a) (b)

Figure 8. Infeasible path and path slicing: (a) example 2 and (b) an infeasible path.

Not all of the sliced negative dependencies can be encoded into flow facts, and user annotations
are unavoidable in such cases. While the separation technique may be applied, it is impractical; our
experiment revealed that up to 1093 ILP computations are needed to compute all the possible combi-
nations of about 84 negative dependencies, which contain 13 basic blocks on average. Nevertheless,
sliced paths are easy to understand in that they contain only essential information on causality, and
they are useful when annotating flow facts.

6. EXPERIMENTAL RESULTS

Four benchmark suites†† GNU OpenSSH‡‡, and Command and Communication Interface (CCI)
software were used to measure the effectiveness of the proposed technique. Four benchmark suites
are commonly used in the researches on WCET estimation. GNU OpenSSH consists of network
connectivity tools using SSH protocol. CCI software, deployed in Korea multi-purpose satellite
(KOMPSAT-1)was developed byKorea Aerospace Research Institute (KARI) to receive and process
tele-commands periodically.

††http://www.c-lab.de/index.php?id=462&L=3.
‡‡http://www.openssh.org.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2009)
DOI: 10.1002/stvr



T. H. KIM, H. J. BANG AND S. D. CHA

Table II. Experimental results.

Functional flow Coverage∗
Benchmarks LOC Infeasible paths Neg. dependencies facts (%)

Gothenburg 2299 497 329 81 25
FloridaSt 1456 8531 938 239 25
Uppsala 6494 1434 1373 51 4
Seoul National University 3465 361 313 184 59
CCI 5394 20 16 10 63
OpenSSH 65530 1888 1362 80 6

Average 14106.3 2121.8 721.8 107.5 30.2

∗Coverage: ratio of infeasible paths covered by functional flow facts.

Table II shows the experimental results. Note that infeasible paths are concrete paths and negative
dependencies are abstract ones, as mentioned previously. Because one abstract path may represent
multiple concrete paths, the number of negative dependencies is smaller than that of infeasible paths.
Among the infeasible paths generated, nearly 30% of them were automatically converted into

functional flow facts using the proposed technique. In benchmarks Seoul National University and
CCI, functional flow facts covering more than 50% of the infeasible paths were derived automati-
cally. These flow facts increase the tightness of WCET estimate without expensive computational
cost; in that the number of IPET computation doubles for every disjunction included in flow
facts.
Unfortunately, benchmarks Uppsala and OpenSSH demonstrated poor coverage of less than 10%.

Although the performance of IPET computation could still be improved by these functional flow
facts and still reduce the penalties caused by disjunctions, uncovered cases contained many simple
dependencies that are convertible to flow facts.
Detailed inspection revealed that the infeasible path generation technique is still not advanced

enough to identify infeasible paths in complex control and data flows. More accurate and scalable
emerging techniques for software model checkers and static program analyzers [36–38] could
increase the performance of the generation.
On the other hand, effectiveness of the path slicing technique seriously depended on the charac-

teristics of infeasible paths identified. In some case, the slicing failed to simplify some infeasible
paths into compact dependencies that the proposed technique can be applied.
For example, in the case of FloridaSt benchmark, path slicing dramatically reduced the number of

infeasible paths by nearly 90%; that is, 938 negative dependencies captured 8531 concrete infeasible
paths. The slicing technique was particularly effective on this program because it had a sequence of
loops and there were numerous routes by which a trivially infeasible statement could be reached.
However, the static path slicing technique is unable to eliminate semantically irrelevant state-

ments. In the below code, for instance, the first if-statement (lines 1–5) updates the value of
variable a on both branches. Therefore, the static slicing algorithm is unable to reduce either of the
two infeasible paths s0s1s2s6s7 and s0s1s4s6s7. Semantic analysis, however, clearly reveals that s7
is never executed due to the initialization of variable a at line 0. Had a forbidden path s0� s7 been
derived, flow facts would have been automatically generated.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2009)
DOI: 10.1002/stvr



A SYSTEMATIC REPRESENTATION OF PATH CONSTRAINTS FOR IPET

Table III. Number of ILP calculation required for Gothenburg benchmark suite.

Proposed technique
Identified Separation technique

Functions dependencies (# of ILP solving) Encoded Failed # of ILP solving

f1 1 2 1 0 1
f2 6 180 4 2 30
f3 8 2520 8 0 1
f4 12 1.04E+06 12 0 1
f5 68 2.11E+41 24 44 3.93E+33
f6 211 1.36E+277 9 202 3.34E+271
f7 11 967 680 11 0 1
f8 3 6 3 0 1
f9 3 15 3 0 1
f10 3 6 3 0 1
f11 3 6 3 0 1

0 a = −100;
1 if (b>0) {
2 a++;
3 } else {
4 a=a+2;
5 }
6 if (a>0) {
7 . . .
8 }

To alleviate this problem, the Path Slicer must be able to identify the fundamental cause–effect
relationship with respect to infeasible paths. Research on summarization technique such as shortest
counterexample generation [39] and error explanation [40] could help to achieve shorter and more
simple path constraints and increase the encoding ratio. This adaptation still remains as a further
work.
Table III shows the number of ILP calculation required for the Gothenburg benchmark in detail.

The separation technique required more than 100 calculations for six functions. However, our
technique requires only one computation for eight functions. For example, WCET of f 2 can be
obtained roughly 6 times faster than the separation methodwhen using our technique. Unfortunately,
two functions f 5 and f 6 still introduced many disjunctions because few of their path constraints
can be encoded in our technique and the separation technique applied to.

7. CONCLUSION

This paper proposed a systematic encoding technique for path constraints, positive and negative
dependencies. If all the triggers satisfy the dominance relation and the last trigger precedes the
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consequence node, a positive dependency can be translated into a flow fact. A negative dependency
can also be encoded into a flow predicate with at most one disjunction. Such translation has been
automated, and the amount of ILP computation can be reduced significantly.
While not all the path constraints can be automatically translated into flow facts, the contribution

of this paper is significant and of practical importance to those who must perform IPET analysis
on embedded real-time software. One less disjunction in flow facts reduces the number of ILP
calculation into half.
Experimental results revealed that the effectiveness of the proposed technique mainly relied

on the quality of dependency generation. While path slicing technique could produce compact
dependencies efficiently sometimes, syntactic methods had limitations on the dependency identifi-
cation. Because improvement of effectiveness of the proposed work requires more subtle techniques
on dependency generation, adaption of non-syntactic techniques including error explanation and
shortest counterexample technique remains as further work.

APPENDIX A: PROOFS OF LEMMAS AND THEOREMS

A.1. Proof of Lemma 4.1

Lemma 4.1. If node t precedes c, w�G(t→Fc) if and only if |w|t ≥1→|w|c≥1.
Proof of Lemma 4.1 in two directions.
⇒ direction If w�G(t→Fc), two types of execution paths w are possible.

(i) if |w|t=0, |w|t ≥1→|w|c≥1 is trivially true.
(ii) if |w|t ≥1, w contains at least one occurrence of node c and t should be followed by c by

the semantics of LTL formula. Therefore, |w|t≥1→|w|c≥1 is true.

⇐ direction If |w|t ≥1→|w|c≥1 is true, the following possibilities exist:

(i) if |w|t=0, path w does not contain t and trivially w�G(t→Fc).
(ii) if |w|t ≥1∧|w|c≥1, let us assume an execution path w such that |w|t ≥1∧|w|c≥1 and

w/�G(t→Fc). This path w=q0q1 . . .qn contains qi= t , and c does not occur after t by
the definition of prior node.
Therefore, there must exist q j=c such that j < i since |w|c≥1. This contradicts the
assumption that the node t precedes c. �

A.2. Proof of Lemma 4.2

Lemma 4.2. If node t precedes c, w�G(t→G¬c) if and only if |w|t ≥1→|w|c=0.

Proof of Lemma 4.2 in two directions.
⇒ direction If w�G(t→G¬c), two types of execution paths w are possible.

(i) if |w|t=0, |w|t ≥1→|w|c≥0 is trivially true.
(ii) if |w|t ≥1, w=q0q1 . . .qn contains qi= t such that ∀ j (i< j≤n).q j �=c. The following

shows the possible cases of |w|c.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2009)
DOI: 10.1002/stvr



A SYSTEMATIC REPRESENTATION OF PATH CONSTRAINTS FOR IPET

(a) if |w|c=0, |w|t ≥1→|w|c=0 is trivially true.
(b) if |w|c≥1, the pathw contains q j such that j < i∧q j=c. This contradicts the assump-

tion that the node t precedes c.

Thus, |w|c=0 if |w|t ≥1.
By (i) and (ii), |w|t ≥1→|w|c≥0 is true.

⇐ direction If |w|t ≥1→|w|c=0 is true, two cases are possible.

(i) if |w|t=0, w�G(t→G¬c) is trivially true.
(ii) if |w|t ≥1∧|w|c=0, w contains only t . Therefore, w�G(t→G¬c). �

A.3. Proof of Theorem 4.1

Theorem 4.1. A positive dependency t�c is equivalent to (�t ≤V(t)·�c) if node t precedes c.
Proof of Theorem 4.1. Directly derived by Lemma 4.1 and the following Lemma A.1 �

Lemma A.1. The convex area of (t≤V(t)·c)∧(0≤ t≤V(t))∧(0≤c≤V(c)) contains only those
(t,c) such that (t≥1→c≥1), if t and c have integer values.

Proof of Lemma A.1. The following are equivalent to each other, when t and c are non-negative
integers:

(i) (t≥1→c≥1)
(ii) (t=0∨c≥1)
(iii) (t≥0∧c≥1)∨(t=0∧c=0)

Figure A1 shows the convex area enclosed by (t≤V(t)·c) ∧ (0≤ t≤V(t)) ∧ (0≤c≤V(c)). In
this figure, it is apparent that the rectangle A contains only those (t,c) such that (t≥0∧c≥1)
where (0≤ t≤V(t)) ∧ (0≤c≤V(c)). On the other hand, triangle B includes only those (t,c)
such that (t=0∧c=0)∨(0≤ t≤V(t)∧c=1), since points (t,c) satisfying the condition (0≤ t≤
V(t)∧c=1) are already included in the region A, and the regions A and B together include only
those (t,c) satisfying condition (iii). �

A.4. Proof of Theorem 4.2

Theorem 4.2. A negative dependency t ��c is equivalent to (�t≤V(t)·(1−�c))∨(�c≤V(c)·(1−
t)), if node t precedes c.

Proof of Theorem 4.1. Directly derived by Lemma 4.2 and the following Lemma A.2. �

Lemma A.2. The union of two convex areas of {(c≤V(c)·(1− t))∧(0≤ t≤1)∧(0≤c≤V(c))}
and {(t≤V(t)·(1−c))∧(0≤ t≤V(t))∧(0≤c≤1)} contains only those (t,c) such that (t≥1→
c=0), where t and c are integers and (0≤ t≤V(t))∧(0≤c≤V(c)).
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Figure A1. The convex area for a positive dependency : t≤V(t)·c.

Proof of Lemma A.2. The followings are equivalent to each other if t and c are non-negative
integers:

(i) (t≥1→c=0)
(ii) (t=0∧c≥0)∨(t≥0∧c=0)

Figure A2 shows the two convex areas A and B of {(c≤V(c)·(1− t))∧(0≤ t≤1)∧(0≤c≤
V(c))} and {(t≤V(t)·(1−c))∧(0≤ t≤V(t))∧(0≤c≤1)}, respectively. Area A includes points
(t,c) satisfying (t=0∧c≥0)∨(t=1∧c=0). Similarly, the condition (t≥0∧c=0)∨(t=0∧c=1)
characterizes the area B. The union of the two areas, therefore, includes only (t,c) such that
(t≥1→c=0) and the two areas together include (t,c) such that it satisfies each conjunctive
term of (ii). �

A.5. Proof of Lemma 4.3

Lemma 4.3. Path constraints t1◦ t2◦· · ·◦ tn�c and t1◦ t2◦· · ·◦ tn ��c are equivalent to the path
constraints tn�c and tn ��c, respectively, if ∀i∧(1≤ i≤n−1): ti dominates ti+1.
Proof of Theorem 4.3. Trivially derived by the following Lemma A.3. �

Lemma A.3. Let a bounded program be P=(Stmts, Blks, E, bentry , Bexit, V) and ∀i ∈N∧(1≤ i≤
n) : ti ∈Blks. If ∀i∧(1≤ i≤n−1): ti dominates ti+1, w�{t1∧F(t2∧F(· · ·(tn−1∧Ftn)))} if and only
if |w|tn ≥1.
Proof of Lemma A.3. in two directions:
⇒ direction if w�{t1∧F(t2∧F(· · ·(tn−1∧Ftn)))}, |w|tn ≥1 is trivially true by the semantics of

the LTL formula.
⇐ direction Proof by induction on the number of triggers.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2009)
DOI: 10.1002/stvr



A SYSTEMATIC REPRESENTATION OF PATH CONSTRAINTS FOR IPET

Figure A2. The two convex areas for a negative dependency : (c≤V(c)·(1−t)) and (t≤V(t)·(1−c)).

(i) basis(n=1) : if trigger is a node t , the lemma is trivially true,
(ii) induction hypothesis(n=k−1) : let w�{t1∧F(t2∧· · ·Ftn−1)} if |w|tn−1≥1,
(iii) induction(n=k) : If |w|tk ≥1 and tk−1 dominates tk , tk−1 occurs between q0 and tk in w.

Therefore, |w|k−1≥1. By induction hypothesis, w�{t1∧F(t2∧· · ·Ftn−1)}. There-
fore, w�{t1∧F(t2∧F(· · ·(tn−1∧Ftn)))} since tn−1 is followed by tn by dominance
relation. �
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