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Abstract

Industrial software companies developing safety-critical systems are required to use rigorous safety analysis techniques to demonstrate

compliance to regulatory bodies. In this paper, we describe an approach to formal verification of functional properties of requirements for an

embedded real-time software written in software cost reduction (SCR)-style language using PVS specification and verification system. Key

contributions of the paper include development of an automated method of translating SCR-style requirements into PVS input language as

well as identification of property templates often needed in verification. Using specification for a nuclear power plant system, currently in

operation, we demonstrate how safety demonstration on requirements can be accomplished while taking advantage of assurance provided by

formal methods.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Safety-critical systems such as fly-by-wire aircraft and

emergency shutdown systems for nuclear power plants are

controlled by software, and regulation bodies routinely require

rigorous safety demonstrations. Of all phases in software

development, requirements engineering plays the most critical

role in determining the overall software quality. According to

NASA’s data [13], nearly 75% of failures found in operational

software are rooted in requirement errors. Among various

approaches suggested for developing high-quality require-

ments specifications and conducting cost-effective analysis,

formal methods are considered effective and promising [9].
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We classify properties in requirements to be verified as either

structural or functional properties. In Ref. [10], we demon-

strated that PVS specification and verification system is useful

in verifying SCR-style requirements for structural correctness

such as consistency among input and output definitions and

lack of circular reference and also Heitmeyer have researched

on the similar problem [7]. As industrial systems are quite

complex in that requirements document which often consists of

several hundred pages long, the need for automated analysis is

critical. In fact, Kim and Cha [10] demonstrated that much of

tedious and potentially error-prone inspection process in the

requirements can be fully automated and that inspection team

could focus their effort on intellectually-challenging and

domain-specific properties.

In this paper, we extend work reported in Ref. [10] to

verify application-dependent properties which we refer to as

functional properties. They are often stated in natural

language and specify constraints to be satisfied by the

system. Functional properties are often derived from

the results of failure mode and effect analysis (FMEA) or

domain expert’s knowledge. In the case of Wolsung
Reliability Engineering and System Safety 87 (2005) 351–363
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Fig. 1. Example of program functional specification.

1 We performed case-study on a safety-critical system currently in

operation to demonstrate scalability as opposed using an artificial and toy-

sized problem. Consequently, names used in Wolsung SDS2 are used in this

paper without modification.
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shutdown system number 2 (SDS2), nuclear power plant

shutdown system which we used as case-study in this paper,

functional properties to be verified are stated in a document

named program functional specification (PFS) written in

natural language. Building on Ref. [10] which developed

procedures for automatically translating software require-

ments written in SCR-style specification, we identify several

functional property patterns often needed when verifying

real-time software and describe PVS-based proof pro-

cedures. Even though we use a case-study found in nuclear

industry, verification procedures we propose are general

enough to requirements for real-time systems based on the

Parnas’ four-variable model [19] and synchronous language.

The Wolsung SDS2 is designed to continuously monitor

the reactor state (e.g. temperature, pressure, and power) and

to generate a trip (e.g. shutdown the plant and display an

alarm) signal if the system enters unsafe state. The trip signal

should be generated when the system detect unsafe system

states by comparing critical parameter values such as

pressure or temperature against the predefined threshold

values. Software requirements specification (SRS), written in

SCR-style notation, consists of about 200 pages of diagrams

and tables, and the system-level requirements named PFS,

authored by domain experts and written in English, is about

21 pages long. In this case-study, we concentrate on the trip

condition named PDL_trip which is the most complex one

among three trip conditions. SRS and PFS for PDL_trip is

about 22 and four pages long, respectively. Safety constraints
to be satisfied by the system are usually derived from PFS

documents whose portions are shown in Fig. 1 (line numbers

have been added for illustration purpose only).

SCR-style requirements [1] consist of four components.

They are variable definitions, functional overview diagrams

(FODs), structured decision tables (SDTs), and timing

function definitions. Variable definitions describe interface

between the computer system and its environment in terms

of monitored and controlled variables. Monitored variables,

with m_prefix, refer to the inputs to the computer system.

Similarly, controlled variables refer to externally visible

outputs generated to the environment via actuators. For each

variable, attributes such as type, units, range, or accuracy

are defined. FODs represent a hierarchical organization of

functions using a notation similar to the data-flow diagram.

A group, denoted by the g_prefix, consists of subgroups or

basic functions, and function definition is given f_prefix.

(Fig. 2). A function, whose definitions are captured in SDT,

is assumed to take no time to compute the output value. The

required behavior of each basic function is expressed in a

tabular notation, called SDT, as shown in Fig. 3. For

example, the output of the function f_PDLCond1 is either

k_CondOut or k_CondIn whose prefix indicates that



Fig. 2. Examples of the function overview diagram.
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the output is a constant value. Condition macros are used as

needed to enable concise specification of SDT. Fig. 3

indicates that the function returns the value k_CondOut
when m_PDLCond is equal to k_CondSwLo and

w_FlogPDLCondLo[f_Flog] is equal to a. The ‘–’

entries denote the ‘don’t care’ condition. In addition to
Fig. 3. The SDT for
graphically capturing input–output relations and required

computations, state variables, with s_prefix, store the

function output computed during the previous cycle so

that its value may be used in the current cycle. Finally,

timing functions are drawn as a bar (j), as t_Pending and

t_Trip shown in Fig. 2(c) illustrates. FOD implicitly
f_PDLCond.



2½tKTimer_value; t�

ðt_sK3Þ; Time_value; tolÞ

T. Kim et al. / Reliability Engineering and System Safety 87 (2005) 351–363354
specifies internal data dependencies among various com-

ponents as well and dictates the proper order of computing a

set of functions. For example, in Fig. 2(c), as the output of

the f_PDLSnrI[i], iZ1,.,4 function is used as input to

the f_PDLTrip, the latter may be invoked only when

computation of the former is completed. This is the same

concept used in synchronous data-flow languages such as

LUSTRE [6].

Timing function is defined using generic timing function

named t_Wait whose formal definition is shown below.

Initial value, at time zero, is FALSE, and it stays true for

Time_value period when the value of C(t) changes from

false to true.

t_WaitðCðtÞ; Time_value; tolÞ

Z

true if there exists an instant in time; t_s

such that Cðt_sÞ ANDlt_WaitðC

false otherwise; including at t Z 0

8><
>:

PVS is an interactive tool for writing specifications and

constructing proofs [3]. It has been successfully used in

several industrial applications. Examples [15–17,23] include

verification of several communication and real-time proto-

cols. One of the most complex systems verified by PVS to

date is the AAMP5 microprocessor which has nearly half a

million transistors [14]. PVS was also used to prove the

completeness and consistency of conditions in the RSML

specification of the TCAS II specification [8], and to prove

an avionics control system [4]. Our decision to use PVS in

performing verification of functional properties is based on

the following factors:
1.
 PVS, a freely available software, is useful when

developing an integrated safety analysis environment in

which proofs of structural, functional, and safety
Fig. 4. An SCR-style SRS editor genera
properties are performed. Verification of structural

properties has already been done in Ref. [10] using

PVS, and the current release of PVS includes built-in

support for SDT notations as well as automated analysis

for consistency and completeness.
2.
 PVS specifications support an extension of classical

higher-order logic with strong typing. Type checking

helps to find errors in an early stage.
3.
 PVS theorem prover is based on the sequent calculus.

It supports highly automated proof strategies as well as

top-down proof exploration and construction
The rest of our paper is organized as follows. Section 2

describes the proposed verification procedure for functional

properties, and Section 3 discusses results of our case-study

and compares the proposed approach against other

approaches. Section 4 concludes this paper.
2. Verification of SCR-style SRS

Our approach to verification of functional properties is

conducted in the following steps:
1.
 Editing SCR-style SRS and translate it to PVS. An SRS

editor and translator were provided, and the specifi-

cation is translated into PVS specifications. Fig. 4 is

a screen dump of the tool. This procedure can be
ting a PVS specification.
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automated and the detailed procedure is described in

Section 2.1.
2.
 Translation of PFS into PVS. Functional properties are

derived from PFS in a natural language, English in case

of Wolsung SDS2 SRS, and they are expressed as PVS

theorems. Although this process is not automated, as

English documents are used as inputs, cross-references

and templates proposed in this paper assist translation

process as explained in Section 2.2.
3.
 Proof. PVS software reads in requirements and proper-

ties to be verified, and a proof session is started. The later

part of Section 2.2 explains how earlier proofs can be

reused when proving similar properties.

2.1. Translation from SCR-style SRS to PVS

PVS input derived from SCR-style SRS through the

following five steps: 1. definition of time (tick) model

elements, 2. definition of types and constants, 3. definitions of

types for monitored and controlled variables, 4. translation of

SDTs, and 5. definition and translation of timing functions.
Fig. 5. Outlines of translate
A unit of PVS specification is THEORY. The translated

specifications for the Wolsung SDS2 PDL Trip consist of

mainly three theories. The THEORYs are THEORY tick,
THEORY definition, THEORY time, and THEORY
pdl, and these THEORYs are stored in files tick.pvs,

definition.pvs, time.pvs, and pdl.pvs, respectively. The

THEORY tick defines a basic tick definition shown in

step 1. The THEORY definition defines types, con-

stants, and variables with importing THEORY tick and is

translated in step 2, and 3. The THEORY time defines a

generic timing function with importing THEORY tick and

THEORY definition, and is translated in step 5(1). The

THEORY pdl defines software functions in SRS with

importing THEORY tick, THEORY definition, and

THEORY time, and is translated in step 4 and 5(2). These

theory templates are shown in Fig. 5(a)–(d). The numbering

on the left is merely a line number for reference in this

paper, and is not part of the translation procedure or

translated specification. The IMPORTING keyword is used

for including other theory such that definitions in imported

theory could be used.
d PVS specification.



Fig. 6. Step 1: definition of model elements.
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2.1.1. Step 1. Definition of time model elements

Time model must first be defined as a PVS theory if

there are real-time requirements. Time increases by a

fixed period, a positive number, so we specify time using

a tick. The tick is a natural number and a time can be

computed by multiplying tick and a fixed period

between tick. This part is common through different

specifications and is denoted in Fig. 6. Line 1 defines

tick and line 2 defines t, representing a variable of type

tick. In line 3, a constant init is defined to be 0, for

using as the initial value of tick.
2.1.2. Step 2. Definition of types and constants

Once time model is defined, other data types and constant

values need to be defined. If needed, data types defined in

another theory file can be imported to avoid repetition.

Analog variables are declared as real type whereas digital

variables are declared as enumeration type. The values of

variables with time are declared as functions from tick to

the variable type. Fig. 7 shows the types and constant

definitions used in the Wolsung SDS2. Line 1 shows the

definition of millivolt, defined in the SCR-style as an

analog variable, so it is translated to the real type. Line 2

is a definition of t_Millivolt as a function from tick
to millivolt. Line 4 is a definition of the zero_one
type for a digital variable, defined as set type whose

membership includes 0 and 1. In line 5, undef is used to

declare constants whose values are left undefined during

requirements engineering phase but to be decided later

during software development. k_Trip and k_NotTrip
in lines 6 and 7 are constants of the digital variable type.
Fig. 7. Step 2: definition of
Line 11 defines to_TripNotTrip as an enumeration of

k_Trip and k_NotTrip. Lines 12 and 13 define a

function t_TripNotTrip from tick to to_TripNot
Trip. This type includes a trivial function mapping from

any tick value t to the constant k_Trip for ensuring

non-emptiness. The to_CondInOut is an enumeration

type whose members are k_CondIn and k_CondOut.

Line 15 is a function t_CondInOut from tick to

to_CondInOut. Line 17 defines enumabc used within

SDT. enumabc is an enumerative type for a, b, and c.

2.1.3. Step 3. Definition of types for monitored

and controlled variable

This step defines the types of the monitored and

controlled variables using the definitions from step 2. The

variables are defined in the form variable:type. Fig. 8

is an example for monitored variable m_Flog and

controlled variable c_PDLTrip.m_Flog is a type

t_Milivolt in line 1 and c_PDLTrip is a type

t_TripNotTrip.t_Milivolt is defined at line 2 in

Fig. 7, and t_TripNotTrip is defined at line 12 in Fig. 7.

2.1.4. Step 4. Translation of SDTs

Definitions on time model and data types are used in

further defining internal computations as either SDT or

timing function. Hierarchical information is unnecessary

when verifying correctness with respect to functional

properties. The translation order of functions should be

partial ordered, because of dependencies of definitions.

There are two function types in SCR-style requirements

depending on whether or not values of state variables

are used.

Let f_output, f_input1, f_input2, and s_output be function

names or variable names.

The first kind of function is
typ
f_output(t)Zcompute(f_input1(t), f_input2(t))
es and constants.



Fig. 8. Step 3: definition of types for monitored and controlled variables.
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To compute f_output, it reads the values of the f_input1

and f_input2 at tick t and then compute f_output at tick t. For

this function, the translation template is
1:
2

tab

PV
f_output(t):value_typeZ

2:
 compute(f_input1(t), f_input2(t))

If the condition macro is defined within compute, the

macro should be locally defined by the LET.IN construct

In this case, the translation template is2:
The second kind of function is
f_output(t)Zcompute(f_input1(t), s_output(t))
s_outputðtÞZ
initial_value when tZ0

f _outputðtK1Þ when t s0

(

One must note that there exists a circular dependency in

the above definition (e g. f_output and s_output) and that type

checking mechanism of PVS does not allow circular

dependencies in an explicit manner. However, one can use

definitional style of function definition where local defi-

nitions are embedded within a recursive definition. That is,

f_output is written as a finite state machine which refers

previous state values (i.e. s_output in a local definition

LET.s_output.IN) as well as the current input values to

determine f_output value.
In SCR-style SRS, functions and condition macros are defined as

ular notation, so w_condition_macro and computes in translated

S specification are expressed as a TABLE.ENDTABLE construct.
The definition of f_output is given in lines 1–9. Line 8

refers to s_output, but as s_output is not defined until

lines 10–12, so a local definition of s_output is given

within the function f_output at lines 3–6. The keyword

RECURSIVE is used to indicate a recursive function, and a

MEASURE function provided to allow the type checker to

generate proof obligations to show termination. The

s_output at line 10–12 is a definition of the previous

value of f_output.
Fig. 9 shows how SDT for PDLCond trip condition is

translated, shown earlier in Fig. 3, as PVS function

supports definition of primitive SDT constructs [18] as

shown in lines 17–25. It is worth noting that in the PVS

specification, the structure is nearly identical except the

fact that rows and columns are transposed and that

disciplined use of comments (or comment lines such as

lines 17 and 19) further improves readability of PVS

specification. While it is possible to express SDT in PVS in

a different style using AXIOM construct so that local

definitions are unneeded, step-by-step proof might be

required for safety auditing.
2.1.5. Step 5. Definition and translation of timing function

The semantics of timing functions are defined as shown

in Fig. 10. The function twf at lines 1–7 defines the output

as FALSE when tick tZ0 and TRUE for a specified time
interval tv after triggering a condition to TRUE (i.e. that ts
is a current tick, the output at tsK1 is FALSE, and the

condition at ts is TRUE). The function twfs at lines 9–10

specifies a function from tick to an output(bool) to

specify a trajectory of the function twf.



Fig. 9. Step 4: example of SRS (f_PDLCond and s_PDLCond) in definitional style.
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An example of translating a specific timing function

is given in Fig. 11. Lines 1–2 define the condition

used in timing function t_Trip. The cycletime
in line 3 is an interval between two consecutive

executions.
Fig. 10. Step 5(1): the semant
2.2. PFS to PVS translation and PVS proof

Functional properties to be verified are derived from a

natural language specification included in the PFS docu-

ment. To provide systematic guidelines in the translation
ics of timing functions.



Fig. 11. Step 5(2): translation of timing functions.
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process, we propose a two-step process. In the first phase,

cross-reference table containing relationship between the

terms used in PFS and variables defined in SRS is used. See

Table 1 for an example drawn from Wolsung SDS2 cross-

references. It describes that low core differential pressure,

commonly used and well-understood term among nuclear

engineers, have been pointed to several different terms in

the software requirements.

As it has been initially formulated, cross-reference table

is too coarse to be useful in the software requirements

verification process, and it is necessary to rely on domain

experts to refine the table so that difference in the contexts

becomes clearer. Table 2 shows an example of finer-grain

cross-reference table used in the case-study. Such refine-

ment is essential so that functional properties can be

correctly verified within the right context.

In the second phase, one expresses functional proper-

ties to be verified using one of the following patterns.

While functional properties are, by definition, application-

dependent and therefore broad in scope and diversity, we

found the following three patterns to be often needed

when analyzing safety-critical real-time software

requirements.
1.
Tab

A c

PFS

PH

pr
Inputs-trigger-an-immediate-output. This property

proves that the occurrence of triggering event results

in the generation of required output at the same time.

For example, whenever f_conditionZk_condition is

satisfied, the output f_output is k_output. The con-

ditions can be expressed by a few terms using ‘AND’

and ‘OR’. When explicit timing constraints are

missing, implicit universal quantifier is used so that

property is satisfied at all times tR0. In PVS theory,

the first pattern is expressed as follows:

theorem_input_output: THEOREM
(f_condition(t)Zk_condition)ZO
(f_output(t)Zk_output)
le 1

ross

T l

ess
-ref

ow

ur
2.
 Inputs-trigger-continuous-outputs. While this pattern is

similar to the first, difference is that the output must be

maintained for specified time interval between t and

(tCduration). Hypothetical situation includes continu-

ous generation of alarms should the reactor pressure is
erence in SRS (as given in the PFS document)

SRS

core differential

e

f_PDLCond, f_PDLCondHA, f_PDL

f_PDLSnrI[i],iZ1,.,4, f_PDL

t_Trip, f_PHTDAlm[i],iZ1,.,

f_SprdChkA
found to exceed predefined threshold. In PVS, the

property is captured as follows:

theorem_duration: THEOREM
(f_condition(t)Zk_condition)ZO
(FORALL (ti: tick):
(t!Ztiandti!ZtCdurationK1)ZO
(f_output(ti)Zk_output))
Con

Dly

4,
dL

, f

f_P
3.
 Input-trigger-a-delayed-output. In some cases, one

must pass a required duration (theorem_expiration1)

or must continue to monitor environmental condition

(theorem_expiration2) for a required duration before

generating an output. Such properties are often

enforced so that system may avoid generating unes-

sential alarms in response to transient and temporary

events.

theorem_expiration1: THEOREM
(f_condition(t)Zk_conditions)ZO
((0!Zduration)ZO
(f_output(tCduration)Zk_output))

theorem_expiration2: THEOREM
(f_initcondition(t)Zk_initcondi-
tion AN (FORALL (ti: tick):
(t!Zti and ti!ZtCduration-1)ZO
(f_staycondition(ti)Zk_staycondi-
tion))ZO
(f_output(tCduration)Zk_output)
The translation from PFS to PVS THEOREMs follows

the example in Fig. 12, which shows the translation of the

items from Fig. 1. Item e.1 in Fig. 1 is ‘If the D/I is open,

select the 0.3% full power (FP) conditioning level. If

fLOG!0.3% FP-50 mV, condition out the immediate trip.

If fLOGR0.3% FP, enable the trip’. This sentence

matches (Pattern 1), input–output property. ‘The D/I’ is

described as ‘hand switch’ and ‘low power condi-

tioning level’ in line 2 in Table 2. So ‘the D/I’ is mapped

to ‘m_PDLCond’. And ‘the D/I is open’ means

that m_PDLCond(t)Zk_CondSwLo. ‘k_CondSwLo
means open’ is extracted from the constant list in the

SRS documents. In this state, ‘immediate trip’ is

‘condition out’ when fLOG!0.3% FP-50 mV. fLOG is

mapped f_Flog (in Table 2) and 0.3% FP is 2739 mV,
A, f_PDLSnrDly[i],iZ3,.,4,

_PDLSnrM[i],iZ1,.,4, f_PDLTrip, t_Pending,

HTDErr, f_PHTDM, f_PDLSpI[i],iZ1,.,4,



Table 2

Cross-references between terms in PFS and variables in SRS

PFS SRS

Hand switch, low power conditioning level m_PDLCond

Hand switch, pump operating mode f_PumpMde

Previous conditioning status s_PDLCond

PHT core differential pressure measurement,

DPi, DP signal

m_PHTD

PHT low core differential pressure parameter trip,

DPtrip, parameter trip (D/O)

f_PDLTrip
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that is, k_FlogPDLLo (extracted from the PFS and

SRS). In this state, immediate trip should not operate

(condition out). It can be written as f_PDLCondZ
k_CondOut. In this way, we translate THEOREM
th_e_1_1. In a similar way, ‘enable trip’ when

fLOGR0.3% FP is translated into THEOREM th_e_1_2.

A Pattern 2 shows THEOREM th_g_3_1_appropri-
ate in Fig. 17. The THEOREM th_g_3_2 in Fig. 17 is a

Pattern 3.

The translated specification is stored in a file for

verification by PVS. The verification in PVS cannot be

entirely automated, but we found that there is a pattern

when we prove similar properties. The core parts of PVS

specification are a list of function definitions which are

translated through steps 4 and 5. When we prove

theorems, we should rewrite and expand the theorems as

these definitions. For example, the output of the

THEOREM th_e_1_1 is f_PDLCond so we expand

the definition of function f_PDLCond. The definition of

f_PDLCond is removed and s_PDLCond, which is an

input to f_PDLCond, is newly introduced by expanding

the f_PDLCond. We can finish to prove the THEOREMs
by expanding definitions. However, expanding definition

chains have circular dependencies, the proof could be

failed by falling into infinite rewriting. So we need more

cautious proof steps. The ‘expand’ proof command in

PVS expand function definitions, and ‘grind’ proof

command do extensive expansion and rewriting

definitions.

When we prove THEOREM th_e_1_1 and THEOREM
th_e_1_2 in Fig. 12, f_PDLCond is a recursive

definition. So we can prove them by (expand
‘f_PDLCond’) (grind:exclude(‘f_PDLCond’)).

A proof template is (expand* .) (grind:exclude
(.)) or (grind:exclude (.)). The . is related to

the functions or definitions on the paths of data-flows to

avoid infinite rewriting.
Fig. 12. Example of translation fro
3. Discussion

This section shows the usefulness of the verification of

SCR-style SRS using PVS and some ambiguities which we

found during our verification experience.

The general comparison between theorem proving and

model checking was extensively studied, and we do not

mention about the comparison results. However, we would

like to express a few advantages of using PVS. One is the

usage of ‘undef.’ PVS admit to specify an undefined value

as undef keyword. An undefined value will be assigned a

value during later phases of the software development

process. It is difficult to manage the undefined value in

model checking. Model checker can deal with explicit

specified values, but a theorem prover such as PVS can

manage value as a symbolic value without difficulty.

Generally speaking, in early phase in software development,

we cannot decide the values of some variables. So undef

keyword is very useful to specify these values.

During our verification experience, we discovered

notational errors, different terms for the same concepts,

and hidden assumptions.

First, we found that different terms were used in PFS

during the construction of the cross-references. If one term of

PFS refers a few terms in SRS, readers of documents could be

confused or misunderstand. For example, the m_PDLCond
in the third line of Table 2, is used as hand switch, low power

conditioning level, and conditioning level. The m_PHTD in

the fourth line is used as core differential pressure

measurement, DPi, and DP signal. The f_PDLTrip, in

the ninth line is used as the state of PHT low core differential

pressure parameter trip, DPtrip, and parameter trip (D/O).

Specifiers should replace these ambiguous terms with a

single clear term. Our method can be therefore valuable in

encouraging that the PFS use terms in the same way that the

SRS does and can improve the quality of documents.

Second, other different terms in the PFS were ‘condition

out the immediate trip’ and ‘enable trip.’ The ‘condition out’

is actually the opposite of ‘enable’, but this is far from clear.

Our analysis highlights such obfuscated wording, in Fig. 13.

We present a modified PFS term, e. ‘the low power condi-

tioning level’ from ‘the conditioning level’ in Fig. 1. The

‘condition in-enable’ is also modified to ‘disable–enable’.

Third, we found another ambiguity between PFS and SRS.

The item g.0 in Fig. 1 introduces delayed trip conditions. The

conditions for the delayed trip are ‘any DP signal is either

below the immediate trip setpoint (2610) or above the high

irrational trip set point (80)’. And we translated the item e.0

into THEOREM th_g_0_1 in Fig. 14. This THEOREM was
m PFS to PVS THEOREMs.



Fig. 13. Unambiguous PFS.

Fig. 14. An ambiguity between PFS and SRS.

Fig. 15. Unfinished proof of THEOREM th_g_0_2.
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proved successfully. After this proof, we tried to check a

complement condition, i.e. ‘any DP signal is neither below

the immediate trip setpoint nor above the high irrational trip

set point’. This condition, shown in THEOREM th_g_0_2
in Fig. 14, should not generate the (delayed) trip. However,

we cannot prove the THEOREM th_g_0_2.

The unfinished proof status is shown in Fig. 15. The

proof procedure is a procedure to make a proof tree, and we

should prove the leaf nodes to finish the proof. In this proof,

the root node of the proof tree is THEOREM th_g_0_2 in

Fig. 15, and the leaf nodes are th_g_0_2.1 and

th_g_0_2.2 in Fig. 15. We cannot proceed to prove the

leaf nodes any more, so we should investigate the cause.

The meaning of th_g_0_2.1 is {K1}
m_PHTD(t!1)(i!1)!Z2610 AND {K2} f_FaveC
(t!1)ZO80ZO{1} f_FaveC(t!1)O80 OR {2}
k_SnrNotTrip?(k_SnrTrip).

In this node, the k_SnrNotTrip?(k_SnrTrip) in

{2}meansk_SnrNotTripZk_SnrTrip,so{2}isfalse.

{K2} f_FaveC(t!1)ZO80 and {1} f_FaveC
(t!1)O80 are inconsistency, i.e. if f_FaveC(t!1)Z
80 is satisfied, the leaf node is not true. So the problem

occurs at f_FaveC(t)Z80.

In a similar way, th_g_0_2.2 has a problem at

m_PHTD(t)(i)Z2610.

So we can conclude that the complement condition is not

satisfied and it has an inconsistent delayed trip condition in

SRS. We investigate the inconsistency between PFS and

SRS, and then we conclude that it is not a violation of safety

properties even though SRS does not confirm to PFS. The

conditions, m_PHTD(t)(i)Z2610 and f_FaveC
(t)Z80 are a kind of safety margin, that is, it is not

necessary to generate the trip signal when this condition is

satisfied but the system generate the trip signal. And, the trip

signal does not make the system a dangerous state.

Fourth, there were hidden assumptions, such as in the

following PFS. The g.1, g.2, and g.3 in Fig. 1 are translated

into Fig. 16 in PVS. But we could not prove the THEOREM
th_g_3_1_inappropriate.

If we fail to prove a theorem, there are three sources of

incorrectness. One is the SRS, another is the PFS, and
the third is proof procedure. Indeed, there is no general way

to find what is wrong. It is a current limitation of theorem

provers, however the unfinished proof status could be help-

ful to find the source of errors. Formal method researchers

are continuing to improve ability to find errors as well as to

prove critical properties [21]. We investigated the reason

and we concluded that there were hidden assumptions.

Items g.2 and g.3 in Fig. 1 are not independent. In other

words, the item g.3 can be true only if the item g.2 is true.

‘Once the delayed parameter trip has occurred’ does not

mean ‘the delayed parameter trip has occurred’ directly, but

it means ‘fAVEC equals or exceeds 80% FP and then the

delayed parameter trip has occurred’. So the assumption the

delayed parameter trip has occurred in item g.3 should be

strengthened with items g.2.1 and g.2.2. As a result of this

investigation, we translated the above PFS into PVS

specifications again, such as in Fig. 17. Then we succeeded

in the proof of THEOREM th_g_3_1_agppropriate.

This error was not found through inspection, and is the kind

of error that is difficult to find without formal analysis.

3.1. Related works

The most related research is done by Myla Archer in

Naval Research Laboratory (NRL). NRL continues to work



Fig. 16. Example of inappropriate translation of PFS.

T. Kim et al. / Reliability Engineering and System Safety 87 (2005) 351–363362
on SCR, and the recent verification environment is timed

automata modeling environment (TAME) [2]. They trans-

lated the SCR specification to PVS specification, and then

they proved safety properties or invariants using PVS. It is

quiet similar to our approach however their SCR model

is based on event-action transition model, but our model is

based on AND–OR table. It changes proof procedures. We

should integrate two methods (or verification procedure) to

verify more general system.

The work presented here is complemented by ongoing

work at McMaster University by Lawford et al. [12]. Using

a similar case-study, their work concentrates on verification

of the refinement of the requirements in the SRS into design

elements, also expressed in SCR, in the software design

description (SDD). They use an extension of the four-

variable model of Parnas [19] into a relational setting, and

claim that their approach is more intuitive for system engi-

neers. Our goal in the present work is essentially the same-to

develop easier-to-use verification approaches-for applica-

tion to the earlier part of the software development process.
Fig. 17. Example of appr
Dutertre and Stavridou also provide an good case-study

[4]. The model in the case-study is based on data-flow

model as in our study and they also used PVS. However, the

way to describing timing function is different from our

approach, so the verification procedure is different. And we

describe a basic function in a tabular notation, so we can

check more internal consistencies. In addition, we studied

declarative style as well as definitional style.

Another research from nuclear domain experts [22]

shows that why our automated translation procedure is

important for verifying safety-critical system. They wrote a

SRS in colored petri nets (CPNs) and then manually

translated the CPN model into PVS. We found some errors

in the translated PVS specification. Those errors show that

the automatic and systematic method is an important factor

in a successful verification [11].

Another approach for formal validation of requirements

from PFS is done by Gervasi and Nuseibeh [5]. It provides a

systematic and automated method to construct a model from

a PFS, and then checking some structural properties (for
opriate translation.
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example, function’s domain is correct) of the constructed

model. We think that their extraction technique can help in

extracting functional properties; however, they do not verify

extracted functional properties.
4. Conclusion

To verify functional properties, we developed a software

tool with a graphical user interface that converts SCR-style

requirements specifications into the PVS language. In

addition, we provide a method for verifying functional

properties in PFS using PVS. We believe that the procedure

helps to construct a high-quality safety-critical software.

Our graphical editor provides a user-friendly interface to

allow editing of SCR-style specifications and automates the

translation process. However, the proof process can be com-

pleted with a limited study of the proof pattern. The specifier

translates PFS into PVS theorems manually, even though we

can translate systematically using a cross-reference table.

Although we strongly believe that our approach delivers

significant benefits to practitioners, the following further

enhancements seem to be desirable:
†
 integration with an environment for verifying structural

properties which was previously developed [10];
†
 development of translation rules so that a formal

specification written in statecharts or modecharts can

be verified using the same approach;
†
 more systematic method of translating from PFS to PVS

theorems, to enhance completeness of the current cross-

reference methods;
†
 additional study of proof patterns, to the verification;
†
 enhancements to the SRS-style editor, such as XML

translation, to increase its practical utility.
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