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Abstract

We develop a formal semantics of sequence diagrams. The semantics is given in terms of our new temporal logic, named
HDTL, which is designed to specify dynamically evolving systems. This approach allows to facilitate the generic feature of
sequence diagrams as well as an automatic analysis, the identification of the instances of a sequence diagram over a trace.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Formal semantics; Specification languages; Sequence diagram; Temporal logic

1. Introduction

Sequence diagrams and Message Sequence Charts
(MSCs) offer an intuitive and visual way of describ-
ing design requirements by illustrating possible mes-
sage exchanges among objects in software systems.
Recently, integration of sequence diagrams into UML
by OMG and standardization of MSC by ITU show
that these techniques are widely accepted in practice.

There have been various efforts on the formal-
ization and analysis of MSCs. Examples include ap-
proaches based on automata theory [6], Petri-net the-
ory [1,4], and process algebra [7]. Most of them as-
sume that the semantics of sequence diagrams are
equivalent to that of MSCs. However, there is a sig-

✩ This work was supported by the Korea Science and Engineer-
ing Foundation (KOSEF) through the Advanced Information Tech-
nology Research Center (AITrc).

* Corresponding author.
E-mail address: seung@salmosa.kaist.ac.kr (S.M. Cho).

nificant difference between sequence diagrams and
MSCs: sequence diagrams can begeneric in the sense
that they can describe interactions among arbitrary ob-
jects, i.e., participating objects are not fixed.

Let us consider this further. Suppose that there be
a sequence diagramS that describes an interaction
in a typical client/server system. In general, there
are many client objects that may interact with a
server object. In this case, the intent of the sequence
diagram S is to describe the interactions among
all possible combinations. Unfortunately, proposed
semantic definitions of MSCs do not address the
generic case. To cope with this case, an underlying
formalism requires the notion ofvariables that capture
arbitrary objects from a possible domain and should
provide a mechanism for introducing variables, say
quantifier.

Even though classical quantifiers such as∀ and
∃ provide a precise means to introduce variables,
we argue that they are inappropriate for automatic
analysis: in object-oriented systems, it is impossible
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to fix a set of objects because the configuration of
objects changes over time. However, the definitions of
classical quantifiers require such sets. This makes it a
challenging problem to check the validity of a formula
employing quantifiers only over a trace.

The goal of this paper is to develop a semantics
of sequence diagrams to facilitate its generic feature
as well as automatic analysis. Our semantics is based
on a variant of temporal logic, namedHalf-order
Dynamic Temporal Logic (HDTL) [2], employing the
freeze quantifier proposed in [5]. The novelty of freeze
quantifier comes from its definition that is only based
on a trace. That is, the definition of freeze quantifier
allows the evaluation of a temporal formula including
variables over a trace, without the notion of a fixed set
of objects.

Our semantics allows us to identify the instances
of a sequence diagram over a trace using the analysis
technique, calledtableau method [3]. For a given tem-
poral logic formulaf , tableau method constructs an
automaton that accepts only a set of traces over which
f holds. Unfortunately, when a temporal formula in-
cludes variables, the size of an automaton should be
infinite because its alphabet is infinite. This problem
motivates the design of intermediate representation,
namedflow tree, that changes its structure on demand.
For a given trace, a flow tree identifies a sequence of
events that makes the corresponding HDTL formulaf

hold. When the formulaf is the characterization of
a sequence diagramS, then the identified sequence
of events exactly formsS’s instance. Note that it re-
quires large amount of effort to distinguish a sequence
of causally related events in a trace by hand. Traces
usually consist of a large set of unrelated events and,
thus, automatic identification is valuable. To the best
of our knowledge, this paper is the first attempt to an-
alyze the generic nature of dynamic systems automat-
ically.

2. Sequence diagrams

Sequence diagrams illustrate how objects interact
with each other. Fig. 1 shows a sample sequence
diagram. Vertical lines in the diagram correspond to
objects and arrows between vertical lines represent
messages exchanged between corresponding objects.

Fig. 1. The sequence diagram of the interaction between a philoso-
pher and a fork.

Fig. 2. A sample trace.

Each arrow is associated with a message label. Time
proceeds from top to down.

The simplicity of sequence diagrams make them
suitable for expressing required behaviors. However,
the interpretation of a sequence diagram over a trace
is rather complicated because of thedynamic nature
of object-oriented systems. Let us consider the follow-
ing trace (Fig. 2). In this trace, there are two possible
instances of Fig. 1: one is〈1,3,4〉 and the other is
〈2,5,6〉. It should be noted that the messages 1 and 2
involve in different instances even though they share
the same message label, sayrequest. What makes
this difference is the participation of objects, called
“sender” and “receiver”, in each message. Thus, it is
impossible to determine which events constitute an in-
stance of a sequence diagram without the information
of their participating objects. In addition, the interleav-
ing nature of traces makes it difficult to identify a se-
quence of related events.

For the sake of simplicity, we focus on relevant fea-
tures of sequence diagrams. For example, we interpret
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messagessynchronously, that is, the delivery of mes-
sages and their receipt occur at the same time. For-
mally, a sequence diagramS is represented by a la-
beled directed acyclic graph with the following com-
ponents:

• Roles: A finite setR of roles.
• Messages: A finite setM of messages.
• Message labels: A labeling functiong that maps

each message inM to a triple (l, s, r) where
l denotes alabel of the message and,s and r

denote roles inR, called sender and receiver,
respectively.

• Visual order: There is partial order< over the
messages inM. This order< is induced from
the local total order<r over the messagesM as
following manners:

m<m′ whenm<r m
′,

wherem <r m
′ holds whenm′ is belowm and

sM(m)= sM(m′) or rM(m)= rM(m′).

For clarity, lM(m) denotes the label ofg(m),
and sM(m) and rM(m) do its sender and receiver,
respectively.

We view the behavior of system under develop-
ment as a set of finite sequences of events, called
traces, where each event denotes theoccurrence of a
message. Assume that there are an infinite setO and
a finite setL for participating objects and labels of
messages, respectively. Formally, an evente ∈ E is
triple 〈label, sender, receiver〉 wherelabel ∈ L is the
label of the occurred message, denoted bylE(e), and
sender ∈O andreceiver ∈O are its sender object and
receiver object, denoted bysE(e) and rE(e), respec-
tively. An evente is said to be theoccurrence of a
messagem whenlE(e)= lM(m). Throughout this pa-
per,σ0 denotes the first element of a traceσ andσ i

denotes the trace that results fromσ by deleting the
first i elements.

3. Temporal logic-based semantics

In this section, we introduce HDTL and develop
a semantics of sequence diagrams by defining the
semantic function that translates a sequence diagram
S to an HDTL formulaf .

Assume that there be a setV for variables and a set
L for message labels. The formulae of HDTL are built
from proposition symbols by Boolean connectives,
temporal operators, and freeze quantifiers.

Definition 1 (Syntax of HDTL). Termπ and formulaφ
of HDTL are inductively defined as follows:

• π := s(x) | r(x) | l(x) | l
• φ := π1 = π2 | true | φ1 → φ2 | ¬φ | ©φ | ⊙

φ |✸φ | x.φ

wherex ∈ V andl ∈ L.

In x.φ, the variablex is bound by the freeze
quantifier “x.” to the given event in whichx.φ
is evaluated. The meanings of the others and the
abbreviations (e.g.,a ∧ b ≡ ¬(a → ¬b)) are as
usual (cf. [3]). The following definition of semantics
captures this idea.

Definition 2 (Semantics of HDTL). Let σ be a trace
and E :V → E an environment for variables. The
HDTL formulaφ is said to be satisfied by a pair(σ,E)
when σ |=E φ, where the satisfaction relation|= is
inductively defined as follows:

• σ |=E π1 = π2 iff E(π1)= E(π2),
• σ |=E true,
• σ |=E φ1 → φ2 iff σ |=E φ1 implies σ |=E φ2,
• σ |=E ¬φ iff σ �E φ,
• σ |=E ©φ iff |σ |> 1 → σ 1 |=E φ,
• σ |=E

⊙
φ iff |σ |> 1∧ σ 1 |=E φ,

• σ |=E ✸φ iff σ i |=E φ for ∃i,0 � i < |σ |,
• σ |=E x.φ iff σ |=E[x:=σ0] φ,

whereE denotes the environment to map a variable
v ∈ V to an evente ∈E.

In this definition,E(f (x)) meansfE(E(x)) and
E(l) is just l. E[x := σ ] results in a new environment
that mapsx to σ and the others to the same as those of
E .

Note that the meaning of a freeze quantifier is
defined in terms of a trace only. Thus, when a formula
is closed, that is, all occurrences of variables are within
the scope of corresponding freeze quantifiers, its truth
value is completely determined by a trace. Without the
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fun sem(R,M,<)=
traces := {〈(v1,m1), . . . , (vm,mm)〉: for ∀〈m1,m2, . . . ,mm〉 ∈ seq(M,<)

such thatvi are distinct variables for 1� i �m};
return ∀t ∈ traces: “

∨✸” formula(t, [∀r ∈R: r �→ ⊥]);

where fun formula(t, env)=
if t = 〈(v,m)〉 then return v“.(” node(t0, env)“)”
else return v“.(” node(t0, env)“∧⊙✸” formula(t1, env)“)”

and fun node(〈v,m〉, env)=
if env(sM(m))= ⊥ ∧ env(rM(m))= ⊥ then

env := env ⊕ [sM(m), rM(m) �→ s(v), r(v)];
return “ l(”v“) = ” lM(m);

else if env(sM(m)) �= ⊥ ∧ env(rM(m))= ⊥ then
env := env ⊕ [rM(m) �→ r(v)];
return “ l(”v“) = ” lM(m)“∧ s(”v“) = ”env(sM(m));

else if env(sM(m))= ⊥ ∧ env(rM(m)) �= ⊥ then
env := env ⊕ [sM(m) �→ s(v)];
return “ l(”v“) = ” l(m)“∧ r(”v“) = ”env(rM(m));

else (* env(sM(m)) �= ⊥ ∧ env(rM(m)) �= ⊥ *)
return “ l(”v“) = ” l(m)“∧ s(”v“) = ”env(sM(m))“∧ r(”v“) = ”env(rM(m));

Fig. 3. The definition of semantic function.

loss of generality, we assume that every formula be
closed hereinafter.

Fig. 3 shows the definition of semantic function
where⊕ means the function overloading and the func-
tion seq(M,<) generates a set containing every per-
mutations of messages fromM without violating the
partial order<. In this definition, the functionsem
generates a string as a HDTL formula and the juxta-
position of strings means the string concatenation. For
example, we obtain the following HDTL formula by
applying the functionsem to the sequence diagram in
Fig. 1.

F1 = ✸v1.
(
l(v1)= request ∧
⊙✸v2.

(
l(v2)= acknowledge ∧
s(v2)= r(v1)∧ r(v2)= s(v1)∧
⊙✸v3.

(
l(v3)= release ∧
s(v3)= s(v1)∧
r(v3)= r(v1)

)))
.

Let us explain the definition from inner to outer func-
tions: for a messagem, the functionnode generates a
clause capturing constraint on role and message label.
That is, for an evente “fixed” by a variablev, the re-

sulting clause asserts that the label ofe be the same
as that ofm, and the sender and receiver ofe must
be consistent with those ofm. For example, a clause
l(v2) = acknowledge ∧ s(v2) = r(v1)∧ r(v2) = s(v1)

in the above formula means that there must be an
event fixed byv2 such thatlE(v2) is acknowledge and,
sE(v2) andrE(v2) arerE(v1) andsE(v1), respectively.
In other words, it asserts that a philosopher receiving a
messageacknowledge from a forkf must be who sent
the messagerequest to f .

The functionformula generates a temporal formula
capturing the givenorder of messages: the resulting
formulae of formula can be characterized by the
following context free grammar.

ϕ := ✸v.
(
φ ∧ ⊙

ϕ
)

| ✸v.φ

whereφ is a clause generated by the functionnode.
Recursivelyϕ asserts that eventually (✸) an event
fixed by v must makeφ hold and next (∧⊙

) the
following ϕ must hold. It must be noted that the
eventuality operator✸ allows the arbitrary distance
between related events.

Finally, the functionsem asserts that at least one
of temporal formulae generated fromformula must be
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true. It means that there must be at least one sequence
of events that constitute one of possible sequences of
messages denoted byseq(M,<). In that case, for a
characterizing formulaf of a sequence diagramS,
the pair of a given traceσ and empty environment∅
satisfyf . Then, the satisfaction relation|= of HDTL
can characterize the environmentE at the point that the
validity of f is revealed. Note that every events inE
satisfy the constraint on roles and message labels as
well as ordering constraints. In addition, the number
of variables inf is same to that of messages inS.
Thus, these events form the instance of the sequence
diagramS.

4. Extension on tableau method

Originally, the goal of the extension on tableau
method is to check the validity of HDTL formulae [2].
As noted earlier, this capability allows us to identify
instances of a sequence diagram over a trace: we de-
fine the semantics of sequence diagrams such that, for
a sequence diagramS, a resulting HDTL formulaf
holds if and only if there exists a sequence of events
to form the instance ofS. In this case, the events accu-
mulated in the environment form the instance ofS.

Before explaining the extension, let us examine
the idea of tableau method for the standard linear-
time temporal logic briefly. The key idea behind
tableau method is that any temporal formula can be
split into two conditions: a non-temporal condition
on the current state and a temporal condition on the
rest states, called apresent condition and afuture
condition, respectively. For example, a formula✷f
can be split intof ′ on a current state and©✷f ′′
on rest states. The conjunction of two conditions, say
f ′ ∧ ©✷f ′′, is equivalent to the original formula✷f . Because the present formulae contain no temporal
operator, it is possible to check their validity without
examining the proceeding events.

Based on the above idea, tableau method defines a
set of splitting rules that normalizef into the form∨
(f ′

i ∧ ⊗
f ′′
i ) where

⊗
is either© or

⊙
. Note that

eachf ′
i denotes a present condition while eachf ′′

i

denotes a future condition. Applying the splitting rules
recursively, we can construct a finite directed graph,
called tableau, where its nodes and edges denote
future conditions and present conditions, respectively:

Table 1
Splitting rules for tableau construction

[r∧] (f1 ∧ f2)E → {f1E, f2E}
[r∨] (f1 ∨ f2)E → {f1E}, {f2E}
[r ⇒] (f1 ⇒ f2)E → {(¬f1)E}, {f2E}
[r✷] (✷f )E → {f E, (©✷f )E}
[r✸] (✸f )E → {f E}, {(⊙✸f )E}
[rfrz] (x.f )E → {f E[x := σ0]}

suppose that there be a noden denotingf . Fromf we
get a normalized formula

∨
(f ′

i ∧ ⊗
f ′′
i ) by applying

the splitting rules. Then, for each disjunctf ′
n ∧ ⊗

f ′′
n

in
∨
(f ′

i ∧ ⊗
f ′′
i ), we add a noden′ denotingf ′′

n and
connectn′ to n by an edge denotingf ′

n. Since each
application of the splitting rules strictly decreases the
size of formulae, the construction always terminates.

The meaning of tableau can be explained induc-
tively in the following manner: at a noden we expect
the formulaf denoted byn to hold with respect to
a given traceσ . This expectation will hold whenf ′
denoted by onee of n’s outgoing edges be true with
respect toσ0, and iff ′′ denoted by the target noden′
of e hold with respect toσ 1. By repeating the analy-
sis onf ′′ denoted byn′ inductively, we can determine
the validity off over the traceσ .

The tableau method can be extended to support
HDTL as shown in Table 1. It should be noted that
the rule [rfrz] requires an eventσi to discharge a
quantifier. That is, it is impossible to construct a
tableau for an HDTL formula. Therefore, our analysis
should be conducted with one specific trace. This
motivates us to design a deferred representation called
a flow tree. Flow tree is constructed with given a
flow treeT consists of a set of locationL, a set of
transitionT , a flow relationF ⊆ (L× T ) ∪ (T ×L),
and a labeling functionM that associates locations
and transitions with HDTL formulae. WhenF(l, t)

andF(t, l′), a tuple〈t, l′〉 is said to be thebranch of a
locationl.

Initially, a flow tree T consists of only a root
location l denoting an original HDTL formulaf . To
check the validity off over a traceσ , we expand
the branches〈ti , l′i〉 of l such thatM(l)≡ ∨

(M(ti)∧⊗
M(l′i )) where

⊗
is either© or

⊙
by applying the

splitting rules in Table 1. Then, for each branch〈t, l′〉,
we check the validity oft overσ0 and repeat the same
analysis onl′ overσ 1 whent holds. During analysis,
we keep the environment for each locationl. Note that
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more than one branch can remain because flow trees
are nondeterministic in the sense of automata theory.
These lowest locations are referred to asleaf locations.

Note that leaf locations are enough to determine
the acceptance of the trace. This observation makes
it possible to reduce the effort of maintaining flow
trees: we only maintain leaf locations and remove
other locations and transitions. For example, the trace
in Fig. 2 results in three leaf locations denoting the
following formula and environment tuples (1), (2),
and (3):
〈
true,

{(
v1, 〈request,p#1, f#1〉),

(
v2, 〈acknowledge, f#1,p#1〉),

(
v3, 〈release,p#1, f#1〉)}〉, (1)

〈
true,

{(
v1, 〈request,p#2, f#2〉),

(
v2, 〈acknowledge, f#2,p#2〉),

(
v3, 〈release,p#2, f#2〉)}〉, (2)

〈
F1, {}

〉
. (3)

In this case, the first two tuples, (1) and (2),
indicate that two instances of the sequence diagram
have occurred, and show which events collectively
constitute the instances. The last simply says that new
instances of the sequence diagram can always begin.
In this way, we can identify instances of a sequence
diagram over a trace.

5. Concluding remarks

In this paper, we presented the formal semantics
of sequence diagrams that facilitates the generic fea-
ture as well as automatic analysis. Our semantics is
based on a variant of temporal logic, named HDTL,

employing the freeze quantifier. This approach allows
us to identify the instance of a sequence diagram over
a trace. To do this, we developed a deferred represen-
tation of infinite tree, named a flow tree.

This capability raises an interesting question: when
an event participates in more than one instance of se-
quence diagrams, is it an error or not? Since a se-
quence diagram is assumed to capture a set of coher-
ently related events, the above case looks erroneous.
However, in some cases, for a given evente, the pro-
posed semantics can not uniquely identify the causal
event. To resolve this problem, we think elaborate sur-
vey for the usage of sequence diagrams in practice is
required.
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