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SUMMARY

This paper presents a method for the selection of test sequences from statecharts. It is shown
that a statechart can be transformed into a flow graph modelling the flow of both control and
data in the statechart. The transformation enables the application of conventional control and
data flow analysis techniques to test sequence selection from statecharts. The resulting set of test
sequences provides the capability of determining whether an implementation establishes the desired
flow of control and data expressed in statecharts. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The statechart formalism [1] is a graphical language that has been successfully used for
specifying reactive and real-time systems. Basically, statecharts can be regarded as extended
finite state machines (EFSMs) augmented with several concepts that enable the succinct
specification of complex systems such as the hierarchical and concurrent structure on states
and the communications mechanism through events broadcasting. Many variants of semantics
have been proposed for statecharts [2] and one main difference between them lies in the
ways of constructing steps. Intuitively, a step represents the response of a system to the
events generated externally by the environment or internally by the system itself. The
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behaviour of a statechart is then characterized by the set of all runs, each consisting of a
sequence of steps.

Because there may be an infinite number of runs in a statechart, it is impossible to
determine whether an implementation conforms to the required behaviour expressed in a
statechart by considering all runs of the statechart. Therefore, exhaustive testing is impossible
to achieve and it is necessary to have systematic coverage criteria that select a reasonable
number of runs satisfying certain conditions. In recent years, several testing methods have
been proposed for statecharts [3–7]. All of them consider statecharts without variables and
discuss the application of test selection criteria such as state and transition coverage criteria
to the control flow oriented test selection from statecharts. Clearly both the control and data
flow aspects of a system must be tested and the tests generated by the data flow oriented
criteria are complementary to those constructed by control flow oriented criteria [8,9]. Hence,
for the generation of a comprehensive set of complementary tests, both types of test selection
criteria must be used.

This paper presents a method that involves the application of conventional data flow
analysis techniques to the selection of test sequences from statecharts. First it is shown that
the behaviour of a statechart can be represented by an EFSM in a conservative way. In the
approach presented here an EFSM is called a normal form specification of a statechart if
the behaviour of the statechart is preserved in the resulting EFSM, i.e. each run of the
statechart is also a run of the EFSM. Of course, there are an infinite number of EFSMs
that are normal form specifications for a given statechart. A class of EFSMs is identified in
this paper that can be used as a representative of all possible normal form specifications.
The basic idea of the approach is to obtain a normal form specification for a statechart by
flattening the hierarchical and concurrent structure on states and eliminating the broadcast
communications in the statechart. This paper presents results based on the STATEMATE
semantics of statecharts by Harel and Namaad [10].

The main benefit of the transformation from statecharts into EFSMs is that the existing
testing methods and tools developed for EFSMs can now be reused for statecharts. A number
of test selection methods have been proposed for EFSMs (for a survey, interested readers
are referred to Reference [11]). In general, these methods can be divided into two classes
depending on the test selection criteria employed: control flow oriented test selection [12–
15] and data flow oriented test selection [16–20]. Among them, this paper considers the
methods of Uralet al. [18–20] for the selection of test sequences from specifications written
using formal description techniques [21]: SDL, Estelle and Lotos. Their methods use EFSMs
as underlying models of such languages and select test sequences by transforming EFSMs
into flow graphs and then applying data flow analysis techniques to the flow graphs. This
paper shows that statecharts can be transformed into flow graphs modelling the flow of both
control and data in statecharts by combining the transformation method from statecharts into
EFSMs with the methods of Uralet al. This enables the application of data flow analysis
techniques to the selection of test sequences from statecharts. The resulting set of test
sequences provides the capability of determining whether an implementation establishes the
desired flow of both control and data expressed in statecharts.

The remainder of the paper is organized as follows: Section 2 reviews preliminaries of
EFSMs and statecharts. Section 3 gives a formal definition for the STATEMATE semantics,
which was originally described informally in Reference [10]. The formalization is needed to
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provide a formal foundation of the transformation method from statecharts into EFSMs
presented in Section 4. Section 5 describes the application of data flow analysis techniques
to the selection of test sequences from statecharts. Finally, Section 6 gives concluding remarks.

2. PRELIMINARIES

This section provides a brief introduction to EFSMs and statecharts.

2.1. EFSMs

An extended finite state machine(EFSM) M is a tupleM = (Q, q0, I, O, V, Q, d), whereQ
is a finite set of states;q0 P Q is the initial state;I, O and V are finite sets of input symbols,
output symbols and variables, respectively;Q is an interpretation ofV that assigns the initial
value for each variable inV; d is a finite set of transitions. Each transition ind is a tuple
(q, i, o, g, a, q′), where q P Q, i P I, o P O, q′ P Q, g is a predicate on variables inV,
and a is a set of assignments to variables inV. If the choice of transition ind is not unique
with respect toq, i and g, then the EFSM is non-deterministic.

In the approach here, state machines are used as semantic models for both EFSMs and
statecharts. Astate machine Nis a tupleN = (Q, q0, I, O, d), whereQ is a (possibly infinite)
set of states;q0 is the initial state;I and O are finite sets of input symbols and output
symbols, respectively;d is a (possibly infinite) set of transitions. Each transition ind is a
tuple (q, i, o, q′), whereq P Q, i P I, o P O and q′ P Q.

An element inQ of state machineN is called aglobal stateto distinguish it from a state
in EFSMs and statecharts. Note that state machines are allowed to have an infinite number
of states (and hence an infinite number of transitions) so that they can be used in the
formalization of EFSMs and statecharts with infinite state space. Each element ind of state
machineN is called aglobal transition. Note thatd is defined as a relation rather than a
function to model the non-deterministic behaviour of EFSMs and statecharts. A sequence

q0 J→
i0/o0

q1 J→
i1/o1

q2 J→
i2/o2

· · · is a path of state machineN if q0 is the initial state and
(qj, ij, oj, qj+1) P d, for all j $ 0.

An interpretations of a set of variablesV is a mapping that assigns to each variable
v P V a value. An interpretations satisfies a predicateg, written ass u= g, if and only if
the value obtained by evaluatingg using the values(v) for each variablev appearing ing
is true. For a set of assignmentsa, a(s) denotes the interpretation obtained by executing
the assignments ina over s. That is, a(s) = s[v1 £→ e1, v2 £→ e2, . . ., vn £→ en] where vi :=
expi is in a and ei is the value of expressionexpi evaluated overs. A formal semantics of
EFSMs is defined in terms of state machines as follows.

Definition 1: Let M = (Q, q0, I, O, V, Q, d) be an EFSM andS be the set of all
interpretations ofV. The reachability graph G(M) for M is the state machine

G(M) = (Q × S, (q0,Q), I, O, d′)

such that ((q, s), i, o, (q′, s′)) P d′ if there exists a transition (q, i, o, g, a, q′) P d
satisfying s u= g and s′ = a(s).
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The behaviour of an EFSMM is characterized by the paths in its reachability graphG(M).
Each path inG(M) is called arun of M and R(M) is used to denote the set of all runs ofM.

2.2. Statecharts

A statechart Zis a tuple (S, P, V, Q, T ) where S, P, V and T are sets of states, events,
variables and transitions, respectively.Q is an interpretation ofV that assigns the initial
value for each variablev P V. Figure 1 shows an example that demonstrates the main features
of statecharts. The variablem in Figure 1 is used as a synonym formoneyand the initial
value for m is defined byQ(m) = 0.

A state of a statechart is either a basic state or a composite state containing other states
as substates. A composite state is classified as either an OR-state or an AND-state. An OR-
state has substates that are related to each other by an exclusive-or relation, and it has
exactly one default substate. For example, the OR-statecvm in Figure 1 consists ofoff and
on, with off as the default state. Being incvm implies being inoff or in on, but not in
both. An AND-state has substates related by an and-relation. Being in the AND-stateon
implies being incoffee and money simultaneously.

A configuration is a maximal set of states in which a system can be simultaneously.

Figure 1. A simple coffee vending machine.
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Precisely,C # S is called a configuration if: (i)C contains the root state; (ii) for every
AND-states, either s and all substates ofs are in C or they are all not inC; (iii) for every
OR-states, either s and exactly one substate ofs are in C or s and all substates ofs are
not in C. The statechart shown in Figure 1 has the following configurations withC1 as its
initial configuration:C1 = { cvm, off}, C2 = { cvm, on, coffee, idle, money, empty},C3 = { cvm,
on, coffee, busy, money, empty}, C4 = { cvm, on, coffee, idle, money, notempty} and
C5 = { cvm, on, coffee, busy, money, notempty}.

A transition of a statechart is a tuple (s, l, s′), where s, s′ P S are the source state and
target state, respectively. The labell is defined ase[g]/a where e is called a trigger and is
a Boolean expression on primitive events inP; g is called a guard and is a predicate on
variables inV; and a is called an action and is a set ofa1, a2,. . ., an in which eachai is
either a primitive event inP or an assignment to variables inV. For a transitiont P T,
source(t), target(t), trigger(t) and guard(t) denote the source state, target state, trigger and
guard of t, respectively, andgenerated(t) and assignments(t) denote the set of events and
the set of assignments in the actiona of t, respectively.

Two transitionsconflict if there exists a configuration that includes their source states. For
example,t2 and t3 in Figure 1 conflict because there exist configurations that include both
on and idle, say C2 and C4 . For a transitiont, Exits(t) (respectively,Enters(t)) denotes the
set of states that a system exits (respectively, enters) on taking transitiont. In Figure 1,
Exits(t1) = { off} and Enters(t1) = { on, coffee, idle, money, empty}. The formal definitions
for Exits(t) and Enters(t) can be found in Reference [22].

3. A FORMAL DEFINITION FOR THE STATEMATE SEMANTICS

The central notion in the STATEMATE semantics is a step. Informally, a step is a maximal
set of enabled transitions that are triggered by an input and are mutually non-conflicting.
The input is a set of primitive events generated externally by the environment or internally
by the system itself. Once a step is determined, the transitions in a step are executed
simultaneously. LetZ = (S, P, V, Q, T) be a statechart,Config be the set of all configurations
of Z, and S be the set of all interpretations ofV.

Definition 2: Let C, C′ P Config and s, s′ P S. Let t # T be a set of transitions andi,
o # P be sets of primitive events, calledinput and output, respectively. A tuple (i, t, o) is

a step from (C, s) to (C′, s′), denoted by (C, s) J→
(i,t,o)

(C′, s′), if

I each transition int is triggered byi, i.e. trigger(t) evaluates to true fori;
I each transition int is enabled in (C, s), i.e. source(t) P C and s u= guard(t);
I no two transitions int conflict;
I t is maximal, i.e. each transition not int but triggered byi and enabled in (C, s)

conflicts with some transition int;
I C′ = (C − <tPt Exits(t)) < <tPt Enters(t);
I o = <tPt generated(t);
I s′ = a(s), wherea = <tPt assignments(t).
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If the choice of t is not unique with respect to (C, s) and i, then the statechart is
non-deterministic.

3.1. The synchronous time model

The STATEMATE semantics provides two models of time: synchronous and asynchronous.
The two time models use the same step construction method defined in Definition 2 and
differ only in the ways external events can be introduced to a system. In the synchronous
time model, external events can be introduced to a system after termination of each step.
This implies that each step (i, t, o) in the synchronous time model has a constraint on the
input i such that i = iex < i in where iex is a set of external events generated by the
environment andi in is a set of internal events generated in the previous step.

Definition 3: The reachability graph GS(Z) for a statechartZ = (S, P, V, Q, T) with the
synchronous time model is the state machine

GS(Z) = (Config× 2P × S, (C0, [, Q), 2P, 2P, d)

such that ((C, E, s),i, o, (C′, E′, s9)) P d and only if there exists a step (i, t, o) from (C,
s) to (C′, s′) satisfying (i) E # i and (ii) E′ = o.

A global state (C, E, s) of state machineGS(Z) represents all the relevant status of statechart
Z: (i) the states that the system is in; (ii) the events generated internally in the previous
step; (iii) the values of variables. The initial global state is defined as (C0, [, Q), where
C0 is the initial configuration and[ states that there is no internal event generated at the
initialization. For example, the initial global state in Figure 1 is ({cvm, off}, [, [m £→ 0]).
The requirement ‘E # i’ in the above definition states the constraint on the inputi of a step
(i, t, o) such that any external event can be included ini as far asi contains the internal
events generated in the previous step. The requirement ‘E′ = o’ states that the events generated
in the current step are stored in the next global state.

Like EFSMs, the behaviour of a statechart is characterized by the paths in its reachability
graph. Each path in the reachability graphGS(Z) of a statechartZ is called arun of Z with
the synchronous time model. A run of a statechart represents a non-terminating computation
that maintains an ongoing interaction with the environment. As an example, the following
shows a run of the coffee vending machine in Figure 1. The run occurs when the sequence
of steps ({t1}, { t5}, { t3}, { t8}, { t4}) is taken.

(C1, [, [m £→0]) J→
{ power-on}/ [

(C2, [, [m £→0]) J→
{inc}/[

(C4, [, [m £→1]) J→
{ coffee}/{ dec}

(C5, {dec}, [ m £→1]) J→
{ dec} /[

(C3, [, [m £→0])

J→
{ done} /[

(C2, [, [m £→0]) · · ·
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3.2. The asynchronous time model

In contrast with the synchronous time model, the asynchronous time model assumes that a
system can accept external events only when the system is stable. Once external events are
accepted, a sequence of steps is executed until the system becomes stable again. Stable
means that there are no internal events generated in the previous step and there is no
transition enabled and thus further steps are impossible without new external events. Formally,
a global state (C, E, s) is stable if E = [ and ([, [, [) is the only possible step from
(C, s). A sequence of steps between two stable global states is referred to as asuper-step.
Each step (i, t, o) in the asynchronous time model has a constraint on the inputi such that
i = iex, when the step occurs in a stable global state, andi = i in otherwise.

Definition 4: The reachability graph GA(Z) for a statechartZ = (S, P, V, Q, T) with the
asynchronous time model is the state machine

GA(Z) = (Config × 2P × S, (C0, [, Q), 2P, 2P, d)

such that ((C, E, s), i, o, (C′, E′, s′)) P d if and only if there exists a step (i, t, s) from
(C, s) to (C′, s9) satisfying (i) E = i if (C, E, s) is not stable and (ii)E′ = o.

The requirement (i) states that only internal events generated in the previous step can be
introduced to a system when the system is not stable. It also states that any external events
can be introduced when the system is stable.

As mentioned before, the synchronous and asynchronous time models differ only in the
ways external events can be introduced to a system. Because external events can be
introduced at any step in the former model, the latter can be regarded as a restricted version
of the former.RS(Z) (respectively,RA(Z)) are used to denote the set of all runs of a statechart
Z with the synchronous (respectively, asynchronous) time model.

Theorem 1: Let Z be a statechart. RA(Z) # RS(Z).
Proof

Suppose that (C0, E0, s0) J→
i0/o0

(C1, E1, s1) J→
i1/o1

· · · is a run inRA(Z). When (Cj, Ej, sj) is
stable, Ej = [ and thusEj # ij. When (Cj, Ej, sj) is not stable,Ej = ij and thus Ej # ij.
Therefore, the run is also a run inRS(Z).

4. NORMAL FORM SPECIFICATIONS FOR STATECHARTS

In the approach presented here, any EFSM that preserves the behaviour of a statechart is
called a normal form specification (NFS) of the statechart. Precisely, an EFSMM is a
normal form specificationfor a statechartZ with the synchronous (respectively, asynchronous)
time model if RS(Z) # R(M) (respectively,RA(Z) # R(M)). By Theorem 1, if an EFSMM is
a normal form specification for a statechartZ with the synchronous time model, then it is
also a normal form specification forZ with the asynchronous time model. That is,
RS(Z) # R(M) implies thatRA(Z) # R(M).
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4.1. Transforming statecharts into EFSMs

For a given statechart, it is possible to obtain an infinite number of EFSMs that are normal
form specifications for the statechart. For example, a simple way to obtain a normal form
specification for a statechart is to generate the reachability graph of the statechart under the
assumption that each variable of the statechart has a finite domain. The major problem is
the data explosion, i.e. it is often impractical to generate such reachability graphs when the
state space is large and it is impossible when the state space is infinite. The approach here
avoids the data explosion by obtaining a normal form specification without expanding the
values of variables of statecharts. The basic idea is such that the hierarchical and concurrent
structure on states is flattened by (i) using the configurations of a statechartZ as the states
of an EFSMM and (ii) using the possible steps ofZ as the transitions ofM.

Definition 5: The normal form specification(NFS) for a statechartZ = (S, P, V, Q, T),
denoted by NFS(Z), is the EFSM

(Config× 2P, (C0, [), 2P, 2P, V, Q, d)

such that ((C, E), i, o, g, a, (C′, E′)) P d if and only if

I E # i;
I E′ = o;
I there exists a set of transitionst # T satisfying

— each transition int is triggered byi;
— the source state of each transition int is in C;
— no two transitions int conflict;
— g = `tPt guard(t);
— a = <tPt assignments(t);
— C′ = (C − <tPt Exits(t)) < <tPt Enters(t);
— o = <tPt generated(t).

A state of NFS(Z) is a pair (C, E) whereC is a configuration andE is a set of primitive
events and is used to store the internal events generated in the previous step. Hence, the
state space of NFS(Z) is equivalent to that of statechartZ. A transition of NFS(Z) corresponds
to a sett of transitions ofZ and represents a set of steps that may (but not necessarily do)
occur in Z. Note that the requirements fort in the above definition are similar to those in
the step construction method except that the second, fourth and seventh items concerning
the values of variables from Definition 2 are removed. The following lemma is a direct
consequence of Definitions 2 and 5.

Lemma 1: Let Z= (S, P, V, Q, T) be a statechart and E, E′ # P. For each step(i, t, o)
from (C, s) to (C′, s′) in Z satisfying E# i and E′ = o, there is a transition((C, E), i, o,
g, a, (C′, E′)) in NFS(Z) such thats u= g and s′ = a(s).

Theorem 2: Let Z = (S, P, V, Q, T) be a statechart. RS(Z) # R(NFS(Z)).

Proof
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Suppose that (C0, E0, s0) J→
i0/o0

(C1, E1, s1) J→
i1/o1

· · · is a run inRS(Z). By Definition 3, (ij,
tj, oj) is a step from (Cj, sj) to (Cj+1, sj+1) of Z such thatEj # ij and Ej+1 = oj, for all j $ 0.
By Lemma 1, ((Cj, Ej), ij, oj, gj, aj, (Cj+1, Ej+1)) is a transition of NFS(Z) such thatsj u= gj

and sj+1 = aj(sj), for all j $ 0. By Definition 1, ((C0, E0), s0) J→
i0/o0

((C1, E1), s1) J→
i1/o1

· · ·
is a run of R(NFS(Z)).

The normal form specification for the coffee vending machine is shown in Figure 2 in
which the eventspower-onand power-offare abbreviated aspon and poff. Each transition in

{ t1, t21, t22, t23, t24, t31, t32, t41, t42, t51, t52, t61, t62, t71, t72, t73, t81, t82, t83, t[}

represents a set of possible steps that may occur when one event occurs. For example,
consider the global state (C1, [, [m £→0]) and the eventpower-on in Figure 1. The step
({ power-on}, { t1}, [) from (C1, [m £→0]) to (C2, [m £→0]) is represented by the transition
t1 in Figure 2. Each transition in

{ t3i5, t3i6, t3i7, t3i8, t4i5, t4i6, t4i7, t4i8, t[i4, t[i5, t[i6, t[i7, t[i8, t′4i7, t′4i8}

represents a set of possible steps that may occur when two events occur.
For legibility, certain implicit transitions are omitted from Figure 2 that are classified into

two types. Each implicit transition of the first type represents steps consisting of an empty
set of transitions and whose source state and target state are equivalent. For example, the
step ({power-off}, [, [) from (C1, [m £→0]) to (C1, [m £→0]) in Figure 1 is represented by
the implicit transition ((C1, [), {power-off}, [, true, [, (C1, [)) in Figure 2; 25 such
implicit transitions are omitted from (C1, [) to (C1, [) in Figure 2, i.e. those whose input
symbol corresponds to each subset of {power-off, coffee, done, inc, dec}. Each implicit
transition of the second type represents steps whose transitions are triggered by an input
containing more events than necessary. For example, the step ({power-on, power-off}, { t1},
[) from (C1, [m £→0]) to (C2, [m £→0]) is represented by ((C1, [), {power-on, power-off},
[, true, m:=1, (C2, [)); 25 such implicit transitions are omitted from (C1, [) to (C2, [),
i.e. those whose input symbol corresponds to each superset of {power-on} in { power-on,
power-off, coffee, done, inc, dec}.

Now consider how exactly NFS(Z) represents the behaviour of the original statechartZ.
In general, the converse of Theorem 2 does not hold because the values of variables are
discarded when defining transitions of NFS(Z). The following shows a counterexample that
falsifies the converse of Theorem 2. Suppose that eventsdoneand inc occur simultaneously
at (C3, [, [m→0]) in Figure 1, then

(C3, [, [m £→0]) J→
{ done,inc} /[ (C4, [, [m £→1]) · · ·

is the only possible run. However, there exist three runs from (C3,[,[m→0]) in Figure 2
including the above one and the following two runs:
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Figure 2. The normal form specification for the coffee vending machine.
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(C3, [, [m £→0]) J→{ done,inc} /[

(C2, [, [m £→0]) · · ·

(C3, [, [m £→0]) J→
{ done,inc} /[

(C5, [, [m £→1]) · · ·

These two runs do not satisfy the fourth requirement of maximality in the step construction
method in Definition 2. The transformation from a statechartZ into NFS(Z) induces these
runs because the requirement of maximality cannot be fulfilled without considering the values
of variables.

4.2. Discussion

4.2.1. Other STATEMATE constructs

The above transformation method does not exhaust other important STATEMATE constructs
such as actions associated with states, transitions with multiple source and target states,
compound transitions, histories and priorities. However, it is fairly simple to extend the
transformation method once a formal definition is obtained for the step construction method
for these constructs. For example, actions associated with states can be integrated into the
step construction method as follows: letentry(s) (respectively,exit(s)) be the set of entry
actions (respectively, exit actions) associated with states. Now the seventh item in Definition
2, which concerns the action part of a transition, is replaced by

I a = <tPt A1(t) < A2(t) < A3(t), where
— A1(t) = <sPExits(t)>C exit(s);
— A2(t) = assignments(t);
— A3(t) = <sPEnters(t)>C′ entry(s).

It is straightforward to modify the transformation method in order to reflect the above change
in the definition of steps.

4.2.2. An alternative definition for normal form specifications

Another class of EFSMs could be identified as a normal form specification for a statechart
by replacing (Config× 2P, (C0, [), 2P, 2P, V, Q, d) by (Config, C0, 2P, 2P, V, Q, d) and
removing the requirements ‘E # i’ and ‘E = o’ from Definition 5. A state of the alternative
NFS corresponds to a configuration of a statechart. Therefore, each global state of the
alternative NFS is of the form (C,s) and does not contain any information about the internal
events generated in the previous step. Like NFS(Z), the values of variables are discarded
when defining transitions of the alternative NFS and hence the requirement of maximality
is also not fulfilled. Moreover, the transformation from a statechartZ into the alternative
NFS induces another type of run that cannot be a run ofZ because the alternative NFS
does not model the broadcast communications inZ at all. As an example, consider the
following run of the alternative NFS:

(C4, [m £→1]) J→
{ coffee}/{ dec}

(C5, [m £→1]) J→
{ inc}/ [

(C5, [m £→2]) · · ·
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There exists no run in Figure 1 that corresponds to the above run because {dec} #/ { inc},
i.e. the above run does not satisfy the constraint on input such that each input should contain
the internal events generated in the previous step.

The set of states of the alternative NFS has a size equivalent to the number of configurations
of statechartZ and hence is much smaller than that of NFS(Z). On the other hand, there
exist a large number of runs of the alternative NFS that cannot be a run ofZ when
communications through events broadcasting occur frequently inZ, while these runs cannot
occur in NFS(Z) because NFS(Z) models the broadcast communications accurately.

4.2.3. Complexity

It is simple to show that the transformation from a statechartZ to NFS(Z) is exponential.
Let C P Config be a configuration ofZ and T(C) # T be the set of transitions ofZ defined
as {t P T u source(t) P C and generated(t) ± [}. The set of states of NFS(Z) has the size
linear to SCPConfig 2uT(C)u, which grows exponentially with the size of constituent AND-states.
This is the well-known state explosion problem inherent in the static analysis methods based
on the construction of FSMs or EFSMs from a set of communicating state machines.
Although the approach advocated here also suffers from the state explosion problem, it has
a novelty such that EFSMs are constructed from statecharts without expanding the values of
variables. Thus the approach has complexity independent of the number of variable values
and can be applicable even if the state space of statecharts is infinite.

Another problem of the static analysis methods for statecharts is the transition explosion.
Most FSM and EFSM models in the testing literature are based on interleaving semantics
that sequentializes simultaneous transitions in an arbitrary order so that at most one transition
has to be analysed at a time. However, many statecharts semantics, including the STATE-
MATE semantics, do not adopt interleaving semantics and normally allow the occurrences
of multiple transitions at a time. Hence the transition explosion problem is inherent in
statecharts and their normal form specifications. Precisely, in NFS(Z) there existu2Pu tran-
sitions starting from each state of the form (C, [) and u2p−Eu transitions from each state of
the form (C, E), whereP is the set of primitive events andE # P.

4.2.4. Controlling the transition explosion

A possible way to alleviate the transition explosion is to identify transitions of normal form
specifications that are not worthy of analysis, e.g. the implicit transitions omitted in Figure 2.
When selecting test sequences from statecharts using data flow analysis techniques, such
implicit transitions need not be considered at all. As an example, consider the transitionst5
and t3 in Figure 1 in which the variablem is defined and used, respectively. A fundamental
question in data flow analysis is one such as ‘is there a definition-clear path with respect
to m from t5 to t3?’ When answering this question, implicit transitions of the first type are
of no importance because such transitions represent steps consisting of an empty set of
transitions, i.e. no definition and use of variables can occur in the steps. Implicit transitions
of the second type can also be discarded because, for each implicit transition of the second
type, there always exists a transition that has the same source and target state and the same
set of definitions and uses of variables.
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Theorem 2 together with Theorem 1 implies that NFS(Z) is also a normal form specification
for a statechartZ with the asynchronous time model. Moreover, it is possible to obtain a
more accurate normal form specification for a statechart with the asynchronous time model
by strengthening the constraint on inputi in Definition 5, i.e. replacing ‘E # i’ by ‘ E = i
when E ± [’. Then, at the state (C3, {dec}) in Figure 2, only the transitiont[ = ((C3,
{ dec}), { dec}, [, true, [, (C3,[)) is allowed. Similarly, at the state (C5, {dec}), only the
transitions t73 = ((C5, {dec}), { dec}, [, m . 1, m: = m−1, (C5,[)) and t83 = ((C5, {dec}),
{ dec}, [, m = 1, m: = 0, (C3,[)) are allowed. Thus the following set of transitions are
removed from Figure 2.

T1 = { t[i4, t[i5, t[i6, t[i7, t[i8, t′4i7, t′4i8}

The transition explosion can be further alleviated by adopting several assumptions widely-
used in specification languages for reactive systems. Included is the partition of the setP
of primitive events into two disjoint subsetsPexternal and Pinternal comprising the external and
internal events, respectively. With this assumption, a primitive event is either generated
externally by the environment or internally by the system itself, but not both. Another
interesting assumption is to partition the setP into Pinput, Poutput and Plocal comprising the
input, output and local events, respectively. These assumptions are often used to support the
modular specification of reactive systems. In Figure 1, assume thatPexternal = { power-on,
power-off, coffee, done, inc} and Pinternal = { dec}. This partition can be used to reduce the
number of transitions of NFS(Z), becausedec cannot be introduced to a system when the
system is in state (C,E) such thatE = [. Hence the following set of transitions is removed
from Figure 2.

T2 = { t71, t72, t81, t82, t3i7, t3i8, t4i7, t4i8}

The number of transitions can be further reduced by the assumptions that restrict the
simultaneous occurrences of external events. One such assumption is the input relation of
Esterel [23]. For example, the input relationcoffee#inc describes the incompatibility between
the eventscoffee and inc, i.e. they cannot occur at the same time. Using the relation, the
following set of transitions is removed from Figure 2.

T3 = { t3i5, t3i6}

A similar assumption can be found in the SCR method [24], called the one-input assumption,
which states that exactly one external event occurs at any instant of time. The one-input
assumption is equivalent to the input relation inEsterel in which all pairs of external
events are declared to be incompatible. The semantics used in Unified Modeling Language
(UML) [25] also assumes that only one external event can be introduced at any instant of
time. In the UML semantics, events generated externally by the environment of an object
are acepted by an event queue for the object. The semantics assumes that the events in the
queue are processed in sequence one at a time.

In summary, Figure 3 shows the revised normal form specification for the coffee vending
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Figure 3. The revised normal form specification for the coffee vending machine.

machine obtained by removing the implicit transitions and the transitions inT1 < T2 < T3

from Figure 2.
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5. SELECTING TEST SEQUENCES FROM STATECHARTS BASED ON DATA
FLOW ANALYSIS

Briefly, the selection of test sequences from a given statechart consists of the following steps.

Step 1. A normal form specification for the given statechart is constructed by following
the method in the previous section.

Step 2. A flow graph for the normal form specification is constructed by following the
method of Uralet al. [18–20].

Step 3. Each variable occurrence in the flow graph is classified as being a definition,
computation use or predicate use.

Step 4. Associations between definitions and uses of each variable are identified on the
flow graph.

Step 5. A set of paths satisfying certain data flow testing coverage criteria is selected from
the flow graph.

Step 6. Each selected path is mapped into a test sequence of the given statechart.

Steps 3 to 5 are performed by conventional data flow analysis techniques with several
modifications that aim to reflect the semantic differences between statecharts and procedural
languages on which data flow analysis techniques are based.

5.1. Transforming EFSMs into flow graphs

In References [18–20], Uralet al. showed that data flow analysis techniques can be applied
to the selection of test sequences from EFSMs by transforming EFSMs into a special class
of flow graphs having the following structural characteristics. Aflow graph G is a digraph
G = (N, en, E), where N = { n u n is a q-node, i-node or t-node}; enP N is the entry node;
E = { e u e is a qi-edge, it-edge ortq-edge}.

Intuitively, the transformation of an EFSMM = (Q, q0, I, O, V, Q, d) into a flow graph
G = (N, en, E) is such that each stateq P Q is represented by aq-node, each input symbol
i in a transitiont P d is represented by ani-node, and each transitiont P d is represented
by a t-node. Since a predicate affects the control flow in an EFSM, each predicateg in a
transition (q, i, o, g, a, q′) is associated with anit-edge. Note thatqi-edges andtq-edges
are used for completing the control flow of the EFSM.

Let M = (Q, q0, I, O, V, Q, d) be an EFSM,sP Q be a state, andin P I be an input
symbol. Let Ts = {( q, i, o, g, a, q′) P d u q = s}, Ts,in = {( q, i, o, g, a, q′) P Ts u i = in}, and
Ws = { in P I u Ts,in ± [}. As an example, consider the revised NFS in Figure 3 and fixs to the
state (C5,{dec}). It can be observed thatTs = { t73,t83}, Ts,{ dec} = { t73,t83}, and Ws = {{ dec}}.

Definition 6: The flow graph G for an EFSMM = (Q, q0, I, O, V, Q, d) is the digraph

G = (N, q0, E)

defined by the mapping such that, for eachq P Q of M, G consists of

I one q-node q;
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I one i-node for eachi P Wq;
I one t-node for eacht P Tq;
I one qi-edge from theq-node q to eachi-node i P Wq;
I one it-edge from thei-node i P Wq to eacht-node t P Tq,i;
I one tq-edge from thet-node t P Tq to the q-node q′ such thatt = (q, i, o, g, a, q′).
Figure 4 shows the flow graph for the revised normal form specification in Figure 3. With

state (C5, {dec}) and input symbol {dec}, the following can be observed in the flow graph:

q-nodes: (C5, {dec}), (C3, [), (C5, [)
i-nodes: {dec}
t-nodes:t73, t83

qi-edges: ((C5, {dec}), { dec})
it-edges: ({dec}, t73), ({dec}, t83)
tq-edges: (t73, (C5, [)), (t83, (C3, [))

5.2. Identifying definitions and uses of each variable

Each variable occurrence in a flow graphG for an EFSM M is classified as being a
definition (def), computational use (c-use) or predicate use (p-use). The following conven-
tions are used to identify definitions, c-uses and p-uses of each variable.
I A variable v is said to be defined at a t-node t if a of the EFSM’s transition

t = (q,i,o,g,a,q′) contains an assignment that definesv.
I A variable v is said to be c-used at a t-node t if a of the EFSM’s transition

t = (q,i,o,g,a,q′) contains an assignment that referencesv.
I A variable v is said to bep-used at an it-edge (i,t) if g of the EFSM’s transition

t = (q,i,o,g,a,q′) referencesv.

Based on the above classification, a pair of def and c-use sets is created for eacht-node
and a p-use set for eachit-edge. A def setdef(t) (respectively, a c-use setc-use(t)) is the
set of variables defined (respectively, used) at nodet. A p-use setp-use((i, t)) is the set of
variables used at edge (i, t). Table I shows the def sets and c-use sets for the flow graph
in Figure 4. The p-use sets are shown in Table II.

5.3. Identifying associations between definitions and uses

A sequence of nodes (n1, n2,. . ., nm), m $ 2, is a path of flow graphG = (N, en, E) if (ni,
ni+1) P E, for all 1 # i , m. A path (i, n1, n2,. . ., nm, j) is a definition-clear pathwith
respect to variablev from node i to node j, if the nodes in the subpath (n1,. . ., nm) contain
no definition of v. A path (i, n1, n2,. . ., nm, j, k) is a definition-clear pathwith respect to
variable v from node i to edge (j,k), if the nodes in the subpath (n1,. . ., nm, j) contain no
definition of v.

Based on def, c-use and p-use sets, associations are identified between definitions and c-
uses and between definitions and p-uses of each variable as follows. Leti be a node andv
be a variable such thatv P def(i).
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Figure 4. The flow graph for the revised normal form specification in Figure 3.

I dcu(v, i) is the set of all nodesj such thatv P c-use(j) and there exists a definition-
clear path with respect tov from i to j. A triple (v, i, j) is called adef–c-use association
if j P dcu(v, i).

I dpu(v, i) is the set of all edges (j, k) such thatv P p-use((j, k)) and there exists a
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Table I. The def sets and c-use sets in Figure 4.

t-node def set c-use set

t1 m [
t51 m [
t52 m [
t61 m m
t62 m m
t73 m m
t83 m [
t4i5 m [
t4i6 m m
The othert- [ [
nodes

Table II. The p-use sets in Figure 4.

it-edge p-use set

({ coffee}, t31) m
({ coffee}, t32) m
({ dec}, t73) m
({ dec}, t83) m
The otherit-edges [

definition-clear path with respect tov from i to (j,k). A triple (v, i, (j, k)) is called a
def–p-use associationif ( j, k) P dpu(v, i).

I A def–use associationis either a def–c-use association or a def–p-use association.

Table III shows the dcu and dpu sets for the flow graph in Figure 4. For example, consider

Table III. The dcu sets and dpu sets in Figure 4.

Node dcu set dpu set

t1 [ ({ coffee}, t31)
t51 t61, t73 ({ coffee},t32), ({dec},t73), ({dec},t83)
t52 t61, t62, t73, t4i6 ({ coffee},t32), ({dec},t73), ({dec},t83)
t61 t61, t73 ({ coffee},t32), ({dec},t73), ({dec},t83)
t62 t61, t62, t73, t4i6 ({ coffee},t32), ({dec},t73), ({dec},t83)
t73 t61, t62, t73, t4i6 ({ coffee},t32), ({dec},t73), ({dec},t83)
t83 [ ({ coffee},t31)
t4i5 t61, t73 ({ coffee},t32), ({dec},t73), ({dec},t83)
t4i6 t61, t73 ({ coffee},t32), ({dec},t73), ({dec},t83)
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the def–c-use association (m,t52,t61). The definition ofm at the t-node t52 can reach the use
of m at the t-node t61 through the definition-clear path (t52, (C5, [), {done}, t42, (C4, [),
{inc}, t61).

In general, there exist three types of associations between definitions and uses in flow
graphs constructed from statecharts. The first type includes associations between a definition
at a t-node t1 and a use at at-node t2 such that the transitionst1 and t2 represent steps
occurring within the same OR-state in the original statechart, e.g. the def–c-use association
(m, t51, t61) in Table III. The t-node t51 represents the statechart’s transition ‘t5: inc/m:=1’
in Figure 1 andt61 represents ‘t6: inc/m:=m + 1’. Associations between definitions and uses
occurring in ordinary EFSMs belong to this type. The hierarchical and concurrent structure
on states introduces two additional types of association. The second type is caused by the
hierarchical structure on states, e.g. the def–p-use association (m, t1, ({coffee}, t31)) in
Table III. The t-node t1 represents ‘t1: power-on/m:=0’ and t31 represents ‘t3:
coffee[m.0]/m:=0’. The definition of m at t1 can reach the p-use att3 because of the
hierarchical structure on states. The third type is caused by the concurrent structure on states,
e.g. the def–p-use association (m, t51, ({coffee}, t32)) in Table III. The concurrent structure
on states allows that the definition ofm at t5 can reach the p-use att3.

5.4. Selecting a set of complete paths

In conventional data flow analysis, flow graphs usually contain a set of exit nodes to model
the terminating behaviour of programs written in procedural languages. A set of complete
paths is then selected to cover associations between definitions and uses. A path in such
flow graphs is calledcompleteif the first node of the path is the entry node and the last
node is an exit node. On the other hand, there is no exit node in flow graphs constructed
from statecharts because the behaviour of statecharts is characterized by their non-terminating
runs. This leads to a modified definition for complete paths as follows. A path of a flow
graph is complete if its first node is the entry node and its last node is aq-node. That is,
eachq-node is regarded as a pseudo exit node.

A number of coverage criteria have been proposed based on data flow analysis in the
software testing literature. Rapps and Weyuker [9] proposed a family of data flow testing
coverage criteria: all-nodes, all-edges, all-defs, all-p-uses, all-c-uses/some-p-uses, all-p-
uses/some-c-uses, all-uses, all-du-paths, all-paths. It is clear that the all-nodes, all-edges, and
all-paths criteria represent the well-known statement, branch and path coverage criteria,
respectively. The all-defs, all-p-uses, all-c-uses/some-p-uses and all-p-uses/some-c-uses criteria
in general yield a set of complete paths that do not necessarily cover all associations between
definitions and uses of each variable. On the other hand, all-uses and all-du-paths criteria
cover all associations between definitions and uses of each variable. This paper shows the
application of the all-uses criterion to flow graphs constructed from statecharts. LetG = (N,
en, E) be a flow graph andP be a set of complete paths inG. P satisfies the all-uses
criterion if, for each noden P N and eachv P def(n), P includes a definition-clear path with
respect tov from the noden to each element ofdcu(v,n) and dpu(v,n).

Table IV shows a set of complete paths selected by the application of the all-uses criterion
to the flow graph in Figure 4. As an example, the complete pathp1 covers the following
def–use associations:
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Table IV. A set of complete paths satisfying the all-uses criterion in Figure 4.

p1 p2 p3 p4 p5 p6 p7

(C1,[) (C1,[) (C1,[) (C1,[) (C1,[) (C1,[) (C1,[)
{ pon} { pon} { pon} { pon} { pon} { pon} { pon}

t1 t1 t1 t1 t1 t1 t1

(C2,[) (C2,[) (C2,[) (C2,[) (C2,[) (C2,[) (C2,[)
{ coffee} { coffee} { inc} { inc} { inc} { inc} { inc}

t31 t31 t51 t51 t51 t51 t51

(C3,{dec}) ( C3,{dec}) ( C4,[) (C4,[) (C4,[) (C4,[) (C4,[)
{ dec} { dec} { coffee} { inc} { coffee} { coffee} { inc}

t[ t[ t32 t61 t32 t32 t51

(C3,[) (C3,[) (C5,{dec}) ( C4,[) (C5,{dec}) ( C5,{dec}) ( C4,[)
{ done} { inc} { dec} { coffee} { dec} { dec} { coffee}

t41 t52 t83 t32 t83 t83 t32

(C2,[) (C5,[) (C3,[) (C5,{dec}) ( C3,[) (C3,[) (C5,{dec})
{ inc} { done} { inc} { dec} { inc} { inc} { dec}

t51 t42 t52 t73 t52 t52 t73

(C4,[) (C4,[) (C5,[) (C5,[) (C5,[) (C5,[) (C5,[)
{ coffee} { coffee} { done} { done} { done} { done,inc} { done}

t32 t32 t42 t42 t42 t4i6 t42

(C5,{dec}) ( C5,{dec}) ( C4,[) (C4,[) (C4,[) (C4,[) (C4,[)
{ dec} { dec} { inc} { inc} { coffee} { inc} { coffee}

t73 t73 t61 t61 t32 t61 t32

(C5,[) (C5,[) (C4,[) (C4,[) (C5,{dec}) ( C4,[) (C5,{dec})
{ done} { inc} { inc} { coffee} { dec} { coffee} { dec}

t42 t62 t61 t32 t83 t32 t83

(C4,[) (C5,[) (C4,[) (C5,{dec}) ( C3,[) (C5,{dec}) ( C3,[)
{ inc} { done} { coffee} { dec} { inc} { dec} { done,inc}

t61 t42 t32 t73 t52 t73 t4i5,
(C4,[) (C4,[) (C5,{dec}) ( C5,[) (C5,[) (C5,[) (C4,[)

{ coffee} { coffee} { dec} { done} { inc} { done,inc} { coffee}
t32 t32 t73 t42 t62 t4i6 t32

(C5,{dec}) ( C5,{dec}) ( C5,[) (C4,[) (C5,[) (C4,[) (C5,{dec})
{ dec} { dec} { inc} { coffee} { done,inc} { poff} { dec}

t83 t83 t62 t32 t4i6 t22 t83

(C3,[) (C3,[) (C5,[) (C5,{dec}) ( C4,[) (C1,[) (C3,[)
{ done} { inc} { inc} { dec} { coffee} { done,inc}

t41 t52 t62 t83 t32 t4i5
(C2,[) (C5,[) (C5,[) (C3,[) (C5,{dec}) ( C4,[)

{ coffee} { done,inc} { done} { poff} { dec} { inc}
t31 t4i6 t42 t23 t73 t61

(C3,{dec}) ( C4,[) (C4,[) (C1,[) (C5,[) (C4,[)
{ dec} { coffee} { inc} { poff} { poff}

t[ t32 t61 t24 t22

(C3,[) (C5,{dec}) ( C4,[) (C1,[) (C1,[)
{ done,inc} { dec} { poff}

t4i5 t83 t22

(C4,[) (C3,[) (C1,[)
{ coffee} { poff}

t32 t23

(C5,{dec}) ( C1,[)
{ dec}

t73

(C5,[)
{ poff}

t24

(C1,[)
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(t1, ({coffee},t31)), (t51, ({dec},t73)), (t51,t73), (t61, ({dec},t83)),
(t83, ({coffee},t31)), (t4i5, ({dec},t73)), (t4i5,t73)

5.5. Mapping complete paths into test sequences

Like the FSM and EFSM based testing methods, the approach here uses a sequence of
inputs of a statechart as a test sequence. In deterministic FSMs and EFSMs, a sequence of
inputs corresponds to exactly one path in such models. However, the information of states
and outputs is additionally necessary to determine each path uniquely in non-deterministic
models. Because statecharts are also non-deterministic, it is required that a test sequence of
a statechart contains two more sequences of configurations and outputs in addition to a

sequence of inputs. A sequenceC0 J→
in0/out0

C1 J→
in1/out1

· · · J→
inm−1/outm−1

Cm is a test sequenceof a
statechartZ = (S, P,V,Q, T) if Cj is a configuration ofZ, for all 0 # j # m, and inj # P is
an input ofZ and outj # P is an output ofZ, for all 0 # j # m − 1. It is easy to map each
complete path of a flow graph into a test sequence by noting the configurations in theq-
nodes, inputs in thei-nodes, and outputs in thet-nodes of the complete path. Table V shows
a set of test sequences of the coffee vending machine. Each test sequence in Table V
corresponds to a complete path in Table IV.

A test sequenceC0 J→
in0/out0

C1 J→
in1/out1

· · · J→
inm−1/outm−1

Cm of a statechartZ with the synchronous
time model (respectively asynchronous time model) isexecutableor feasible if there exists

a run (C0, E0, s0) J→
i0/o0

(C1, E1, s1) J→
i1/o1

(C2, E2, s2) J→
i2/o2

· · · in RS(M) (respectivelyRA(M))
such thatij = inj and oj = outj, for all 0 # j # m − 1. Such a run is called anaccepting run
for the test sequence. The rest sequencests3, ts4, ts5, ts6 and ts7 in Table V are executable
and the following shows an accepting run forts3.

(C1, [, [m £→0]) J→
{ power-on}/ [

(C2, [, [m £→0]) J→
{ inc} /[

(C4, [, [m £→1]) J→
{ coffee}/{ dec}

(C5,{dec}, [ m £→1]) J→{ dec} /[

(C3, [, [m £→0]) J→{ inc} /[

(C5, [, [m £→1]) J→{ done} /[

(C4, [, [m £→1]) J→
{ inc} /[

(C4, [, [m £→2]) J→
{ inc} /[

(C4, [, [m £→2]) J→
{ coffee}/{ dec}

(C5,{dec}, [ m £→2]) J→
{ dec} /[

(C5, [, [m £→1]) J→
{ inc} /[

(C5, [, [m £→2]) J→
{ inc} /[

(C5, [, [m £→3]) J→
{ done} /[

(C4, [, [m £→3]) J→
{ inc} /[

(C4, [, [m £→4]) J→
{ power-off}/ [

(C1, [, [m £→4]) J→
{ power-on}/ [

· · ·

On the other hand, there is no accepting run for the test sequencests1 and ts2 in Table V.

Consider the test sequenceC1 J→
{ power-on}/ [

C2 J→
{ coffee}/{dec}

C3 J→
{ dec}/ [

C3, which is a subsequence
of both ts1 and ts2 and covers the def–use association (t1, (coffee,t31)). The variablem in
Figure 1 is assigned the value of 0 by the step ({power-on}, { t1}, [) and subsequently the
step ({coffee},{ t3},[) cannot be taken because the guard oft3, [m . 0], is not satisfied.

The guard is satisfied only on those test sequences that include at least one occurrence
of inc preceding the first occurrence ofcoffee. The other def–use associations covered by
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Table V. Test sequences corresponding to the complete paths in Table IV.

ts1 C1 J→
{ pon}/ [

C2 J→
{ coffee}/{ dec}

C3 J→
{ dec}/ [

C3 J→
{ done}/ [

C2 J→
{ inc}/ [

C4 J→
{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→{ done}/ [

C4 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ done}/ [

C2 J→{ coffee}/{ dec}

C3 J→{ dec}/ [

C3 J→{ done,inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→
{ poff}/ [

C1

ts2 C1 J→{ pon}/ [

C2 J→{ coffee}/{ dec}

C3 J→{ dec}/ [

C3 J→{ inc}/ [

C5 J→{ done}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→{ inc}/ [

C5 J→{ done}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ inc}/ [

C5 J→
{ done,inc}/ [

C4 J→
{ coffee}/{ dec}

C5 J→
{ dec}/ [

C3 J→
{ poff}/ [

C1

ts3 C1 J→{ pon}/ [

C2 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ inc}/ [

C5 J→{ done}/ [

C4 J→{ inc}/ [

C4 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→{ inc}/ [

C5 J→{ inc}/ [

C5 J→
{ done}/ [

C4 J→
{ inc}/ [

C4 J→
{ poff}/ [

C1

ts4 C1 J→{ pon}/ [

C2 J→{ inc}/ [

C4 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→{ done}/ [

C4 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→{ done}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→
{ poff}/ [

C1

ts5 C1 J→{ pon}/ [

C2 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ inc}/ [

C5 J→{ done}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ done}/ [

C3 J→{ inc}/ [

C5 J→{ done,inc}/ [

C4 J→
{ coffee}/{ dec}

C5 J→
{ dec}/ [

C5 J→
{ poff}/ [

C1

ts6 C1 J→{ pon}/ [

C2 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ inc}/ [

C5 J→{ done,inc}/ [

C4 J→{ inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C5 J→{ done,inc}/ [

C4 J→{ poff}/ [

C1

ts7 C1 J→
{ pon}/ [

C2 J→
{ inc}/ [

C4 J→
{ inc}/ [}

C4 J→
{ coffee}/{ dec}

C5 J→
{ dec}/ [

C5 J→
{ done}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ done,inc}/ [

C4 J→{ coffee}/{ dec}

C5 J→{ dec}/ [

C3 J→{ done,inc}/ [

C4 J→{ inc}/ [

C4 J→{ poff}/ [

C1

the unexecutable test sequencests1 and ts2 cannot also be covered by any executable test
sequence. Such def–use associations are called unexecutable, and thus will not be covered
by the selected test sequences. In fact, the coverage of the executable def–use associations
is advocated by Frankl and Weyuker [8] in the definition of the applicable versions of the
data flow oriented test selection criteria of Rapps and Weyuker [9].

As a technical convenience, the method described here assumed that each variable appearing
in statecharts has only one initial value. It is straightforward to deal with statecharts with
multiple initial states, because the transformation methods from statecharts to EFSMs and
from EFSMs to flow graphs do not depend on the values of variables. Now a test sequence
of statecharts requires the selection of initial values for variables as well as the identification
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of input, output and configuration sequences. The selection of initial values can be carried
out by applying symbolic execution techniques to statecharts. Symbolic execution derives
path conditions that consist of a system of inequalities on variables and hence can be used
to find initial values that will drive a statechart along a particular test sequence. Although
the solution to the system of inequalities provides a set of ranges of values for the variables
occurring in the inequalities, specific values for these variables must be determined for the
construction of an executable test sequence. Clearly, this is a relatively easy activity.
However, in order to increase the error detection capability of a collection of test sequences
and to obtain a definite fault coverage, the selection of values for variables must be based
on a fault model. Such fault models must be formed for particular application domains,
which is still an open problem. Moreover, the fault detection ability of particular collections
of test data must be studied. Such studies can be formulated on the basis of the work
proposed in Reference [26] that addresses the subdomain based test selection criteria. That
is, a test selection criterion is viewed as a means of identifying subdomains of the input
domain of a system where each test unit that must be covered identifies a subdomain of the
input domain. The test selection criteria are then compared for relative effectiveness of fault
coverage on the basis of their respective collections of subdomains.

6. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated that conventional data flow analysis techniques can be applied
to the selection of test sequences from specifications written in statecharts. A method is
proposed that transforms a given statechart to an EFSM, called a normal form specification,
containing all the possible runs of the statechart. The transformation method combined with
the existing method of Uralet al., which transforms an EFSM into a flow graph, enables
the association of a flow graph with a statechart that models the flow of both control and
data in the statechart. A set of test sequences is selected from the resulting flow graph to
cover all associations between definitions and uses of each variable appearing in the original
statechart. These test sequences allow one to determine whether an implementation establishes
the desired associations between definitions and uses expressed in the statechart.

The test sequence selection method can be fully automated. The research group of Ural
et al. has already developed a toolset that automates the construction of flow graphs from
EFSMs and the test sequence selection from flow graphs. Therefore, the only remaining task
is the automated construction of EFSMs from statecharts. For that purpose the authors are
currently investigating the use of library functions in the STATEMATE toolset for information
retrieval of statecharts written using the STATEMATE editor. In addition to the test sequence
selection, the determination of the executability of test sequences and variable values that
make test sequences executable are mandatory for the whole test selection for statecharts.
The application of symbolic execution techniques to statecharts is a prerequisite for supporting
the determination.

Future work includes the development of methods for the selection of test sequences from
statecharts with the complete set of language constructs provided in STATEMATE and with
other semantics. The RSML semantics proposed by Levesonet al. [27] is close to the
asynchronous time model of the STATEMATE semantics. Slight modifications to the test
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sequence selection method proposed in this paper would suffice for the RSML semantics.
For other statecharts semantics, significant changes would be necessary to reflect the different
characteristics of the step construction method in these semantics. Other future work includes
the development of normal form specifications for statecharts with real-time features such as
timeout events and scheduled actions [10] and transitions with time intervals [28].

An interesting future research issue is the granularity of the single execution unit of
statecharts. In general, there are three candidates that may be used as the single execution
unit: transition, step and super-step. This paper implicitly assumed that step is the single
execution unit and the flow of control and data was traced between steps. Alternatively,
super-step may be used as the single execution unit. Many statecharts semantics are based
on the synchrony hypothesis [23], which assumes that the response of a system to an
external input is completed before another external input arrives. The asynchronous time
model of the STATEMATE semantics fulfils the synchrony hypothesis because external
events can be introduced only in stable states, while the synchronous one does not. It may
be more natural to use super-step in the asynchronous time model rather than step as the
single execution unit if one is only interested in tracing the flow of control and data between
a system and its environment. Transition cannot be used as the single execution unit in the
STATEMATE semantics. However, in statecharts with interleaving semantics [28] or the
UML semantics [25], at most one transition may occur at any instant of time, and hence
transition is the single execution unit. Statecharts with such semantics are of special interest
because the transition explosion problem can be reduced in them.
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