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SUMMARY

This paper presents a method for the selection of test sequences from statecharts. It is shown
that a statechart can be transformed into a flow graph modelling the flow of both control and
data in the statechart. The transformation enables the application of conventional control and
data flow analysis techniques to test sequence selection from statecharts. The resulting set of test
sequences provides the capability of determining whether an implementation establishes the desired
flow of control and data expressed in statecharts. Copyright] 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The statechart formalism [1] is a graphical language that has been successfully used for
specifying reactive and real-time systems. Basically, statecharts can be regarded as extended
finite state machines (EFSMs) augmented with several concepts that enable the succinct
specification of complex systems such as the hierarchical and concurrent structure on states
and the communications mechanism through events broadcasting. Many variants of semantics
have been proposed for statecharts [2] and one main difference between them lies in the
ways of constructing steps. Intuitively, a step represents the response of a system to the
events generated externally by the environment or internally by the system itself. The
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behaviour of a statechart is then characterized by the set of all runs, each consisting of a
sequence of steps.

Because there may be an infinite number of runs in a statechart, it is impossible to
determine whether an implementation conforms to the required behaviour expressed in a
statechart by considering all runs of the statechart. Therefore, exhaustive testing is impossible
to achieve and it is necessary to have systematic coverage criteria that select a reasonable
number of runs satisfying certain conditions. In recent years, several testing methods have
been proposed for statecharts [3—7]. All of them consider statecharts without variables and
discuss the application of test selection criteria such as state and transition coverage criteria
to the control flow oriented test selection from statecharts. Clearly both the control and data
flow aspects of a system must be tested and the tests generated by the data flow oriented
criteria are complementary to those constructed by control flow oriented criteria [8,9]. Hence,
for the generation of a comprehensive set of complementary tests, both types of test selection
criteria must be used.

This paper presents a method that involves the application of conventional data flow
analysis techniques to the selection of test sequences from statecharts. First it is shown that
the behaviour of a statechart can be represented by an EFSM in a conservative way. In the
approach presented here an EFSM is called a normal form specification of a statechart if
the behaviour of the statechart is preserved in the resulting EFSM, i.e. each run of the
statechart is also a run of the EFSM. Of course, there are an infinite number of EFSMs
that are normal form specifications for a given statechart. A class of EFSMs is identified in
this paper that can be used as a representative of all possible normal form specifications.
The basic idea of the approach is to obtain a normal form specification for a statechart by
flattening the hierarchical and concurrent structure on states and eliminating the broadcast
communications in the statechart. This paper presents results based on the STATEMATE
semantics of statecharts by Harel and Namaad [10].

The main benefit of the transformation from statecharts into EFSMs is that the existing
testing methods and tools developed for EFSMs can now be reused for statecharts. A number
of test selection methods have been proposed for EFSMs (for a survey, interested readers
are referred to Reference [11]). In general, these methods can be divided into two classes
depending on the test selection criteria employed: control flow oriented test selection [12—
15] and data flow oriented test selection [16—20]. Among them, this paper considers the
methods of Uralet al. [18-20] for the selection of test sequences from specifications written
using formal description techniques [21]: SDL, Estelle and Lotos. Their methods use EFSMs
as underlying models of such languages and select test sequences by transforming EFSMs
into flow graphs and then applying data flow analysis techniques to the flow graphs. This
paper shows that statecharts can be transformed into flow graphs modelling the flow of both
control and data in statecharts by combining the transformation method from statecharts into
EFSMs with the methods of Uradt al. This enables the application of data flow analysis
techniques to the selection of test sequences from statecharts. The resulting set of test
sequences provides the capability of determining whether an implementation establishes the
desired flow of both control and data expressed in statecharts.

The remainder of the paper is organized as follows: Section 2 reviews preliminaries of
EFSMs and statecharts. Section 3 gives a formal definition for the STATEMATE semantics,
which was originally described informally in Reference [10]. The formalization is needed to
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provide a formal foundation of the transformation method from statecharts into EFSMs
presented in Section 4. Section 5 describes the application of data flow analysis techniques
to the selection of test sequences from statecharts. Finally, Section 6 gives concluding remarks.

2. PRELIMINARIES
This section provides a brief introduction to EFSMs and statecharts.
2.1. EFSMs

An extended finite state machifeFSM) M is a tupleM =(Q, qo, I, O, V, 6, ), whereQ
is a finite set of stateg], € Q is the initial state;l, O andV are finite sets of input symbols,
output symbols and variables, respectivdly;is an interpretation oV that assigns the initial
value for each variable itv; & is a finite set of transitions. Each transition dnis a tuple
(q,i, 0,0, a ), whereqe Q,iel,0e O, d € Q, gis a predicate on variables X,
anda is a set of assignments to variables\inIf the choice of transition i is not unique
with respect tog, i and g, then the EFSM is non-deterministic.
In the approach here, state machines are used as semantic models for both EFSMs and
statecharts. Astate machine Ns a tupleN=(Q, qq, I, O, 8), whereQ is a (possibly infinite)
set of statesjg, is the initial state;l] and O are finite sets of input symbols and output
symbols, respectivelyd is a (possibly infinite) set of transitions. Each transitiondins a
tuple @, i, 0, ), whereqe Q,iel,oe O andq € Q.
An element inQ of state machine\ is called aglobal stateto distinguish it from a state
in EFSMs and statecharts. Note that state machines are allowed to have an infinite number
of states (and hence an infinite number of transitions) so that they can be used in the
formalization of EFSMs and statecharts with infinite state space. Each eleméntfistate
machineN is called aglobal transition Note thaté is defined as a relation rather than a
function to model the non-deterministic behaviour of EFSMs and statecharts. A sequence
/o i;/o i>/o
o i (o} o (o8 2 -+ - is apath of state machineN if q, is the initial state and
(9, 1;, 0, G+q) € 6, for all j =0.
An interpretationo of a set of variablesv is a mapping that assigns to each variable
v e V a value. An interpretationr satisfies a predicatg, written aso [=g, if and only if
the value obtained by evaluatirgy using the valueos(v) for each variablev appearing ing
is true. For a set of assignmengs a(o) denotes the interpretation obtained by executing
the assignments i@ over o. That is,a(o0) =dolvi e, V. =6, ..., V,—¢&] wherey, =
exp is in a and g is the value of expressioaxp evaluated ovew. A formal semantics of
EFSMs is defined in terms of state machines as follows.

Definition 1: Let M=(Q, go, I, O, V, 0, 8) be an EFSM andX be the set of all
interpretations ofV. The reachability graph GM) for M is the state machine

G(M) = (Q X Ev (q01®)1 Iv Ov 8’)

such that (@, o), i, o, (q, ¢)) e & if there exists a transitionq( i, 0, g, &, () € &
satisfyingo + g and ¢’ = a(o).
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The behaviour of an EFSNY is characterized by the paths in its reachability gr&{iv).
Each path inG(M) is called arun of M and R(M) is used to denote the set of all runs Mt

2.2. Statecharts

A statechart Zis a tuple § II, V, ©®, T ) whereS II, V and T are sets of states, events,
variables and transitions, respectively. is an interpretation oV that assigns the initial
value for each variablg € V. Figure 1 shows an example that demonstrates the main features
of statecharts. The variable in Figure 1 is used as a synonym faroneyand the initial
value for m is defined by®(m) =0.

A state of a statechart is either a basic state or a composite state containing other states
as substates. A composite state is classified as either an OR-state or an AND-state. An OR-
state has substates that are related to each other by an exclusive-or relation, and it has
exactly one default substate. For example, the OR-state in Figure 1 consists 0brr and
oN, with orr as the default state. Being iotwm implies being inorr or in oN, but not in
both. An AND-state has substates related by an and-relation. Being in the ANDestate
implies being incorree and MONEY Simultaneously.

A configurationis a maximal set of states in which a system can be simultaneously.

4 )

CVM

ty: power-on

Jmi=0 ty: power-off
oN -

/ COFFEE \

ta: coffee[m>0]/dec

IDLE BUSY

MONEY tg: tnc/mi=m+1

ts: inc/m:=1

EMPTY NOTEMPTY

ts: dec[m=1]/m:=0

t7: dec[m>1]/m:=m—1

- /

Figure 1. A simple coffee vending machine.
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Precisely, CC S is called a configuration if: (i)C contains the root state; (ii) for every
AND-state s, eithers and all substates o are in C or they are all not inC; (iii) for every
OR-states, eithers and exactly one substate efare in C or s and all substates of are
not in C. The statechart shown in Figure 1 has the following configurations @®jtlas its
initial configuration:C, ={cvwm, orr}, C, ={cvwm, oN, coffeg idle, money, empty}C; ={cvm,
ON, COFFEE, BUSY, MONEY, EMPTY}, C,={CVM, ON, COFFEE, IDLE, MONEY, NOTEMPTY} and
Cs={cvM, ON, COFFEE, BUSY, MONEY, NOTEMPTY}.

A transition of a statechart is a tupls, (, ), wheres, s € S are the source state and
target state, respectively. The lalels defined asg[g]/a wheree is called a trigger and is
a Boolean expression on primitive eventslih g is called a guard and is a predicate on
variables inV; and a is called an action and is a set @f, a,,. . ., a, in which eacha is
either a primitive event inll or an assignment to variables M. For a transitiont e T,
sourcdt), targefit), trigger(t) and guardt) denote the source state, target state, trigger and
guard oft, respectively, andyenerateft) and assignment$) denote the set of events and
the set of assignments in the actianof t, respectively.

Two transitionsconflict if there exists a configuration that includes their source states. For
example,t, and t; in Figure 1 conflict because there exist configurations that include both
oN andIpLE, sayC, and C, . For a transitiont, Exityt) (respectively,Entergt)) denotes the
set of states that a system exits (respectively, enters) on taking transitionFigure 1,
Exitqt,) = {orr} and Entergt,) = {oN, COFFEE, IDLE, MONEY, EMPTY}. The formal definitions
for Exitgt) and Entergt) can be found in Reference [22].

3. A FORMAL DEFINITION FOR THE STATEMATE SEMANTICS

The central notion in the STATEMATE semantics is a step. Informally, a step is a maximal
set of enabled transitions that are triggered by an input and are mutually non-conflicting.
The input is a set of primitive events generated externally by the environment or internally
by the system itself. Once a step is determined, the transitions in a step are executed
simultaneously. LeZ = (S, 11, V, O, T) be a statecharConfigbe the set of all configurations

of Z, andX be the set of all interpretations &f.

Definition 2: Let C, C' € Configand o, ¢ € 2. Let 7C T be a set of transitions anig
o C II be sets of primitive events, calleédput and output respectively. A tuplei( 7, 0) is

a stepfrom (C, o) to (C, o), denoted by €, o) —> (C, o), if

each transition inr is triggered byi, i.e. trigger(t) evaluates to true for;

each transition inr is enabled in €, o), i.e. sourcdt) e C and o |= guard(t);

no two transitions inr conflict;

7 IS maximal, i.e. each transition not i but triggered byi and enabled inQ, o)
conflicts with some transition irr,

C' =(C- U, Exitdt)) U U,., Entergt);

0= U, generatedt);

o' =a(o), wherea = U,., assignments).
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If the choice of 7 is not unique with respect toC( o) and i, then the statechart is
non-deterministic.

3.1. The synchronous time model

The STATEMATE semantics provides two models of time: synchronous and asynchronous.
The two time models use the same step construction method defined in Definition 2 and
differ only in the ways external events can be introduced to a system. In the synchronous
time model, external events can be introduced to a system after termination of each step.
This implies that each step, (r, 0) in the synchronous time model has a constraint on the
input i such thati=i,, U i, where i, is a set of external events generated by the
environment and,, is a set of internal events generated in the previous step.

Definition 3: The reachability graph G(Z) for a statecharz=(S II, V, 0, T) with the
synchronous time model is the state machine

G«2) = (Configx 2" x 3, (Co, &, ©), 211, 21, §)

such that (C, E, o)., o, (C, E, ¢')) € & and only if there exists a step, (r, 0) from (C,
o) to (C', ¢') satisfying () EC i and (ii) E' =o.

A global state C, E, o) of state machin&g(2) represents all the relevant status of statechart
Z: (i) the states that the system is in; (ii) the events generated internally in the previous
step; (iii) the values of variables. The initial global state is definedGs @, ®), where
C, is the initial configuration andJ states that there is no internal event generated at the
initialization. For example, the initial global state in Figure 1 is\{i, oFr}, &, [m 0]).
The requirementE C i’ in the above definition states the constraint on the inpaf a step
(i, =, 0) such that any external event can be included &s far asi contains the internal
events generated in the previous step. The requirenientd’ states that the events generated
in the current step are stored in the next global state.

Like EFSMs, the behaviour of a statechart is characterized by the paths in its reachability
graph. Each path in the reachability gra@(2) of a statechar is called arun of Z with
the synchronous time model. A run of a statechart represents a non-terminating computation
that maintains an ongoing interaction with the environment. As an example, the following
shows a run of the coffee vending machine in Figure 1. The run occurs when the sequence

of steps ({}, {ts}, {t3}, {ts}, {ta}) is taken.

{power-oy/ & {incy/ &
CL G, [m=0) — (G I, [mH0]) —
{coffeg/{ deg

(C41 ®1 [m }__)1]) -
(Cs, {deg, [m 1)) — (Cy, @, [m —0])

{dong />

—_— (CZ, , [m |__>0]) N
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3.2. The asynchronous time model

In contrast with the synchronous time model, the asynchronous time model assumes that a
system can accept external events only when the system is stable. Once external events are
accepted, a sequence of steps is executed until the system becomes stable again. Stable
means that there are no internal events generated in the previous step and there is no
transition enabled and thus further steps are impossible without new external events. Formally,
a global state @, E, o) is stableif E=J and (J, I, ) is the only possible step from

(C, 0). A sequence of steps between two stable global states is referred teugmastep

Each stepi( 7, 0) in the asynchronous time model has a constraint on the inguth that

i =is When the step occurs in a stable global state, iend, otherwise.

Definition 4: The reachability graph G(2) for a statecharz=(S II, V, 0, T) with the
asynchronous time model is the state machine

Ga(2) = (Configx 2" x 3, (C,, I, ©), 21, 2", 5)

such that (C, E, o), i, o, (C, E, ¢)) € & if and only if there exists a step, (7, o) from
(C, o) to (C, ¢') satisfying (i) E=i if (C, E, o) is not stable and (i)E' =o.

The requirement (i) states that only internal events generated in the previous step can be
introduced to a system when the system is not stable. It also states that any external events
can be introduced when the system is stable.

As mentioned before, the synchronous and asynchronous time models differ only in the
ways external events can be introduced to a system. Because external events can be
introduced at any step in the former model, the latter can be regarded as a restricted version
of the former.R{Z) (respectively,R,(2)) are used to denote the set of all runs of a statechart
Z with the synchronous (respectively, asynchronous) time model.

Theorem 1: Let Z be a statechart. fZ) C R{(2).
Proof

/oo i/oq
Suppose thatG, E,, og) — (Cy, Ej, 01) — - - - is a run inRy(2). When C;, E, o)) is
stable, = and thusg Ci;. When C;, E, o;) is not stable,E =i; and thusE Ci;.
Therefore, the run is also a run RYZ).

4. NORMAL FORM SPECIFICATIONS FOR STATECHARTS

In the approach presented here, any EFSM that preserves the behaviour of a statechart is
called a normal form specification (NFS) of the statechart. Precisely, an EMSM a

normal form specificatioffior a statecharZ with the synchronous (respectively, asynchronous)
time model if Rs(2) C R(M) (respectively,Ra(Z) C R(M)). By Theorem 1, if an EFSMM is

a normal form specification for a statechartwith the synchronous time model, then it is

also a normal form specification foZ with the asynchronous time model. That is,
Rs(2) C R(M) implies thatRA(Z2) C R(M).
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4.1. Transforming statecharts into EFSMs

For a given statechart, it is possible to obtain an infinite number of EFSMs that are normal
form specifications for the statechart. For example, a simple way to obtain a normal form
specification for a statechart is to generate the reachability graph of the statechart under the
assumption that each variable of the statechart has a finite domain. The major problem is
the data explosion, i.e. it is often impractical to generate such reachability graphs when the
state space is large and it is impossible when the state space is infinite. The approach here
avoids the data explosion by obtaining a normal form specification without expanding the
values of variables of statecharts. The basic idea is such that the hierarchical and concurrent
structure on states is flattened by (i) using the configurations of a stateClartthe states

of an EFSMM and (ii) using the possible steps @fas the transitions oM.

Definition 5: The normal form specificationNFS) for a statecharz=(S II, V, 0, T),
denoted by NFS)), is the EFSM

(Configx 21, (C,, @), 21, 2, V, O, §)
such that (C, E), i, 0, g, a, (C, E)) € 6 if and only if

e ECI;
e E=o0;
e there exists a set of transitionsC T satisfying
— each transition inr is triggered byi;
— the source state of each transition 4nis in C;
— no two transitions inr conflict;
— g= /\tET guardt);
— a=U,., assignments);
— C' = (C—- Uy, Exitqt)) U U,., Entergt);
— 0=U., generated).

A state of NFSZ) is a pair C, E) whereC is a configuration andE is a set of primitive
events and is used to store the internal events generated in the previous step. Hence, the
state space of NF3] is equivalent to that of statechatt A transition of NFSZ) corresponds
to a setr of transitions ofZ and represents a set of steps that may (but not necessarily do)
occur in Z. Note that the requirements farin the above definition are similar to those in
the step construction method except that the second, fourth and seventh items concerning
the values of variables from Definition 2 are removed. The following lemma is a direct
consequence of Definitions 2 and 5.

Lemma 1: Let Z=(S II, V, O, T) be a statechart and E, 'E_ II. For each step(i, 7, 0)
from (C, o) to (C, ¢') in Z satisfying EC i and E = o, there is a transition((C, E), i, o,
g a (C, E)) in NFS@) such thatofg and ¢’ = a(o).

Theorem 2: Let Z= (S 11, V, 0, T) be a statechartRs(2) C RINFS(@)).
Proof
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ig/o iy/o.
Suppose thatQ, Eo, o) — (Cy, Ey, 03) — - - - is a run inRgZ). By Definition 3, {,
7, 0;) is a step from ¢, ;) to (Cj.1, 05.1) Of Z such thatE C i; and E;,; =, for all j = 0.
By Lemma 1, (C;, E), ij, 0, g, &, (Cs1, Eia)) is a transition of NFS{) such thato;# g;
ig/o iy/o.
and o,., = a(a), for all j = 0. By Definition 1, (Co, Ec), o) — ((Cy, Es), 03) — - - -
is a run of RINFS@)).

The normal form specification for the coffee vending machine is shown in Figure 2 in
which the eventpower-onand power-offare abbreviated agon and poff. Each transition in

{71, To1y T22y T23; T24y T31, T32) Taw, Tazy Ts1, Ts2 Tew Te2r T71 T72s T73 Ts1 Tg2y T3, T@}

represents a set of possible steps that may occur when one event occurs. For example,
consider the global stateC{, ¢J, [m 0]) and the eventpower-onin Figure 1. The step
({power-o1}, {t}, &) from (Cy, [m F0]) to (C,, [m F0]) is represented by the transition

7, in Figure 2. Each transition in

{1'3||5, T36r T370 T3sy T4|5: Taler Ta|7s Talsr Tojar Tosy Toler To|7 Tos T 47 T 4||s}

represents a set of possible steps that may occur when two events occur.

For legibility, certain implicit transitions are omitted from Figure 2 that are classified into

two types. Each implicit transition of the first type represents steps consisting of an empty
set of transitions and whose source state and target state are equivalent. For example, the
step (fpower-off, J, &) from (C,, [m 0]) to (C,, [m —0]) in Figure 1 is represented by
the implicit transition (C,, &), {power-off, &, true, &, (C,, ©)) in Figure 2; 2 such
implicit transitions are omitted fromQ;, &) to (C,, &) in Figure 2, i.e. those whose input
symbol corresponds to each subset gioyver-off coffee, done, inc, déc Each implicit
transition of the second type represents steps whose transitions are triggered by an input
containing more events than necessary. For example, the gpevéf-on power-off, {t,},
&) from (C,, [m —0]) to (C,, [m 0]) is represented by (;, &), {power-on power-off,
&, true, m=1, (C,, &)); 2° such implicit transitions are omitted fronC{, &) to (C,, O),
i.e. those whose input symbol corresponds to each supersepafef-ory in { power-on
power-off coffee, done, inc, déc

Now consider how exactly NFZ) represents the behaviour of the original statecizart
In general, the converse of Theorem 2 does not hold because the values of variables are
discarded when defining transitions of NEp(The following shows a counterexample that
falsifies the converse of Theorem 2. Suppose that ewdone and inc occur simultaneously
at (C;, g, [m—0]) in Figure 1, then

(Co @, [M0) /D (Cp @, (mi-1]) - -

is the only possible run. However, there exist three runs fr@pnc,[m—0]) in Figure 2
including the above one and the following two runs:

Copyright 0 2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliat?2000;10: 203-227
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-
(Cy, 0)
{pon}
/m:=0
{poff} (Cor Ldech) {pofr)
{coffee}[m>0] Tp:{dec}
/{dec}
T41:{done}
(C2, 0) (Cs, 0)
{tiec}[m:l]
/m:=0
Tsit Ty T2 Tyt
{inc} {deq}{m=1] (Cs, {dec}) {ind} {dec}{m=1]
/m:=1 /m:E0 /miEl /m:=0
{‘coﬁee}[m)O] {dec}[m>1]
/{dec} /m:=m—1
- (Cq, ) (Cs, 0)
T I
{inc} {dec}[m>1] {inc} {dec}{m>1]
Jmi=m+1 /mi=m-—1 Jmi=m+1 Jm:i=m—1
rols = (Ca, 0),  {coffee, inc), {dec), m>0,  me=l, (G, {dec}))
316 = ((Cs, 0), {coffee, inc}, {dec}, m>0, m:=m+1, (Cs, {dec}))
T37 = ({(Cs, 0), {coffee, dec}, {dec}, m>0Am>1, m:=m—1, (Cs, {dec}))
T8 = ({Cs, 0), {coffee, dec}, {dec}, m>0Am=1, m:=0, (Cs, {dec}))
Ta5 = ((Cs, 0), {done, inc}, 0, true, mi=1, (Cq, )
mape = ((C5, 8),  {done, inc}, 0,  true, mi=m+1, (Cy, #))
Tayr = ((Cs, 0), {done, dec}, 0, m>1, mi=m—1, (Cy, 9))
Tays = ((Cs, 0), {done, dec}, 0, m=1, m:=0, (C2, B))
To4 = ((Cs, {dec}),{done, dec}, 0, true, 0, (C2, B))
o5 = ((Cs, {dec}), {inc, dec}, 0,  true, mi=1,  (Cs, 0))
o = ((Cs, {dec}), {inc, dec}, 0,  true, m:=m+1, (Cs, 0))
To7 = ((Cs, {dec}),{inc, dec}, @, m>l, mi=m—1, (Cs, @))
o8 = ((Cs, {dec}), {inc, dec}, 0, m=l, m=0, (C, 0))
T4’H7 = ((C5v {dec}),{done, dec}7 03 m>1, mi=m—1, (04’ 0))
T«;ua = ((Cs, {dec}),{done, dec}, 0, m=1, m:=0, (Ca, B))

Figure 2. The normal form specification for the coffee vending machine.
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{done,in¢/>
Cs G, [m=0]) — (C I, [m=0)) - - -
{done,in¢/>

(Cs, @, [Im0) — (Cs, T, [mE1]) - -

These two runs do not satisfy the fourth requirement of maximality in the step construction
method in Definition 2. The transformation from a statecharinto NFSE) induces these
runs because the requirement of maximality cannot be fulfilled without considering the values
of variables.

4.2. Discussion
4.2.1. Other STATEMATE constructs

The above transformation method does not exhaust other important STATEMATE constructs
such as actions associated with states, transitions with multiple source and target states,
compound transitions, histories and priorities. However, it is fairly simple to extend the
transformation method once a formal definition is obtained for the step construction method
for these constructs. For example, actions associated with states can be integrated into the
step construction method as follows: ledtry(s) (respectively,exit(s)) be the set of entry
actions (respectively, exit actions) associated with statéow the seventh item in Definition

2, which concerns the action part of a transition, is replaced by

e a= U, At) U Ay(t) U Ast), where
- Al(t) = UseExits(t)ﬁC EXit(S);
— A,(t) = assignments);
- A3(t) = Ungnterit)mcl entr)(s).

It is straightforward to modify the transformation method in order to reflect the above change
in the definition of steps.

4.2.2. An alternative definition for normal form specifications

Another class of EFSMs could be identified as a normal form specification for a statechart
by replacing Configx 2", (C,, @), 2", 2", Vv, 0, 8) by (Config C,, 2", 2", V, ©, §) and
removing the requirement&€‘C i’ and ‘E=0" from Definition 5. A state of the alternative
NFS corresponds to a configuration of a statechart. Therefore, each global state of the
alternative NFS is of the formQ,o) and does not contain any information about the internal
events generated in the previous step. Like NEySthe values of variables are discarded
when defining transitions of the alternative NFS and hence the requirement of maximality
is also not fulfilled. Moreover, the transformation from a statecfainto the alternative

NFS induces another type of run that cannot be a rurZ dfecause the alternative NFS
does not model the broadcast communicationsZirat all. As an example, consider the
following run of the alternative NFS:

{coffed/{ deg

(Ca Im1]) 2 (Co, [M 1)) — (G [M2)) - - -
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There exists no run in Figure 1 that corresponds to the above run becdeg§ed {inc},
i.e. the above run does not satisfy the constraint on input such that each input should contain
the internal events generated in the previous step.

The set of states of the alternative NFS has a size equivalent to the number of configurations
of statechartZ and hence is much smaller than that of NBES(On the other hand, there
exist a large number of runs of the alternative NFS that cannot be a rud when
communications through events broadcasting occur frequent®; while these runs cannot
occur in NFSE) because NFZ) models the broadcast communications accurately.

4.2.3. Complexity

It is simple to show that the transformation from a statecZatb NFS) is exponential.

Let C e Configbe a configuration oZ and T(C) C T be the set of transitions df defined

as {t e T | sourcdt) € C and generate®) # }. The set of states of NF&] has the size

linear to S coniig 27, which grows exponentially with the size of constituent AND-states.
This is the well-known state explosion problem inherent in the static analysis methods based
on the construction of FSMs or EFSMs from a set of communicating state machines.
Although the approach advocated here also suffers from the state explosion problem, it has
a novelty such that EFSMs are constructed from statecharts without expanding the values of
variables. Thus the approach has complexity independent of the number of variable values
and can be applicable even if the state space of statecharts is infinite.

Another problem of the static analysis methods for statecharts is the transition explosion.
Most FSM and EFSM models in the testing literature are based on interleaving semantics
that sequentializes simultaneous transitions in an arbitrary order so that at most one transition
has to be analysed at a time. However, many statecharts semantics, including the STATE-
MATE semantics, do not adopt interleaving semantics and normally allow the occurrences
of multiple transitions at a time. Hence the transition explosion problem is inherent in
statecharts and their normal form specifications. Precisely, in EF®ere exist|2"| tran-
sitions starting from each state of the fori@, () and |27 5 transitions from each state of
the form C, E), wherell is the set of primitive events and C II.

4.2.4. Controlling the transition explosion

A possible way to alleviate the transition explosion is to identify transitions of normal form
specifications that are not worthy of analysis, e.g. the implicit transitions omitted in Figure 2.
When selecting test sequences from statecharts using data flow analysis techniques, such
implicit transitions need not be considered at all. As an example, consider the transitions
andt; in Figure 1 in which the variablen is defined and used, respectively. A fundamental
guestion in data flow analysis is one such as ‘is there a definition-clear path with respect
to m from t; to t;?° When answering this question, implicit transitions of the first type are

of no importance because such transitions represent steps consisting of an empty set of
transitions, i.e. no definition and use of variables can occur in the steps. Implicit transitions
of the second type can also be discarded because, for each implicit transition of the second
type, there always exists a transition that has the same source and target state and the same
set of definitions and uses of variables.
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Theorem 2 together with Theorem 1 implies that NES§ also a normal form specification
for a statecharZ with the asynchronous time model. Moreover, it is possible to obtain a
more accurate normal form specification for a statechart with the asynchronous time model
by strengthening the constraint on inputin Definition 5, i.e. replacingEC i’ by ‘E=i
when E# (J'. Then, at the state G {deg@) in Figure 2, only the transitiont, = ((Cs,
{deq), {ded, O, true, &, (C5,0)) is allowed. Similarly, at the stateC{, {degd), only the
transitions 3= ((Cs, {deg), {ded, &, m>1, m=m-1, (C5)) and 753=((Cs, {deqd),
{deg, J, m=1, m:=0, (C;)) are allowed. Thus the following set of transitions are
removed from Figure 2.

Ty = {7z, Tois, Tals, Tol7, Tols, T 417, T 48t

The transition explosion can be further alleviated by adopting several assumptions widely-
used in specification languages for reactive systems. Included is the partition of the set
of primitive events into two disjoint subsel$.,cna and Iinema COMprising the external and
internal events, respectively. With this assumption, a primitive event is either generated
externally by the environment or internally by the system itself, but not both. Another
interesting assumption is to partition the détinto ILpu, oy @and I, comprising the
input, output and local events, respectively. These assumptions are often used to support the
modular specification of reactive systems. In Figure 1, assume Iihat,... = {power-on
power-off coffee, done, infcand Il .o = {degd. This partition can be used to reduce the
number of transitions of NFQ], becausedec cannot be introduced to a system when the
system is in stateQE) such thatE =J. Hence the following set of transitions is removed
from Figure 2.

T, = {771, T72, Tan Te, T3|7: T3|8r Ta|7s T4||8}

The number of transitions can be further reduced by the assumptions that restrict the
simultaneous occurrences of external events. One such assumption is the input relation of
EsTEREL [23]. For example, the input relaticcoffedfinc describes the incompatibility between
the eventscoffeeand inc, i.e. they cannot occur at the same time. Using the relation, the
following set of transitions is removed from Figure 2.

T3 = {73||5, 73||6}

A similar assumption can be found in the SCR method [24], called the one-input assumption,
which states that exactly one external event occurs at any instant of time. The one-input
assumption is equivalent to the input relation BSTEREL in which all pairs of external
events are declared to be incompatible. The semantics used in Unified Modeling Language
(UML) [25] also assumes that only one external event can be introduced at any instant of
time. In the UML semantics, events generated externally by the environment of an object
are acepted by an event queue for the object. The semantics assumes that the events in the
gueue are processed in sequence one at a time.

In summary, Figure 3 shows the revised normal form specification for the coffee vending
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~
(Cy, 0) h
{pon}
/m:=0
{poff} (Ca, {dech) {posf}
T3t
{coffee}(m>0] Tg:{dec}
/{dec}
741:{done}
(Cs, 0) (Cs, 0)
Y
{d‘ec}[mzl]
/m:=0
Tt Tsy:
{inc} (Cs, {dec}) {inc}
/mi=1 /m:=1
{coffee}(m>0] {d?c}[m>l]
/{dec} /mi=m—1
(Cs, 9) (Cs, 9)
Taa
{pof}
LATE
|_] ‘ {done, inc} J
Te1: m:=m+1 Te2
{inc} - {inc}
/mi=m+1 b /mi=m+1
{done, inc}
m:=1

Figure 3. The revised normal form specification for the coffee vending machine.

machine obtained by removing the implicit transitions and the transitions, 0 T, U Ty
from Figure 2.
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5. SELECTING TEST SEQUENCES FROM STATECHARTS BASED ON DATA
FLOW ANALYSIS

Briefly, the selection of test sequences from a given statechart consists of the following steps.

Step 1 A normal form specification for the given statechart is constructed by following
the method in the previous section.

Step 2 A flow graph for the normal form specification is constructed by following the
method of Uralet al. [18-20].

Step 3 Each variable occurrence in the flow graph is classified as being a definition,
computation use or predicate use.

Step 4 Associations between definitions and uses of each variable are identified on the
flow graph.

Step 5 A set of paths satisfying certain data flow testing coverage criteria is selected from
the flow graph.

Step 6 Each selected path is mapped into a test sequence of the given statechart.

Steps 3 to 5 are performed by conventional data flow analysis techniques with several
modifications that aim to reflect the semantic differences between statecharts and procedural
languages on which data flow analysis techniques are based.

5.1. Transforming EFSMs into flow graphs

In References [18-20], Uradt al. showed that data flow analysis techniques can be applied
to the selection of test sequences from EFSMs by transforming EFSMs into a special class
of flow graphs having the following structural characteristicsfléw graph Gis a digraph
G=(N, en E), whereN={n|n is a g-node,i-node ort-node}; ene N is the entry node;
E={e| e is aqgi-edge,it-edge ortg-edge}.

Intuitively, the transformation of an EFSNI =(Q, o, I, O, V, 0, §) into a flow graph
G=(N, en, E) is such that each stage Q is represented by g-node, each input symbol
i in a transitiont € & is represented by ainnode, and each transitione 6 is represented
by a t-node. Since a predicate affects the control flow in an EFSM, each predjciatea
transition §, i, 0, g, & () is associated with ait-edge. Note thagi-edges andg-edges
are used for completing the control flow of the EFSM.

Let M=(Q, qo, I, O, V, O, §) be an EFSM,s e Q be a state, anih € | be an input
symbol. LetT;={(qg, i, 0, g, & q) € §|q=s}, Tein={(a, i, 0, 9, & ) e T¢|i=in}, and
W,={in e | | T;»# J}. As an example, consider the revised NFS in Figure 3 and fixthe
state Cs,{deg). It can be observed thals={ 7,573}, Tsideq =1{772Tea}, and W, ={{ deg}.

Definition 6: The flow graph Gfor an EFSMM =(Q, q,, |, O, V, 0, §) is the digraph
G= (N! qO! E)
defined by the mapping such that, for eagk: Q of M, G consists of

e one ¢-nodeq;
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e onei-node for each € W,
e onet-node for eacht € T,
e one gi-edge from theg-node g to eachi-nodei € W,;
e oneit-edge from thei-nodei € W, to eacht-nodet € T,;
e onetg-edge from thet-nodet € T, to the g-nodeq such thatt=(q, i, o, g, & d).
Figure 4 shows the flow graph for the revised normal form specification in Figure 3. With
state Cs, {deg) and input symbol fled, the following can be observed in the flow graph:

q-nOdeS: C51 {deQ)v (C31 @), (C51 ®)
i-nodes: feg

t-nodes: 7,3, Tgs

gi-edges: (Cs, {deg), {deq)
it-edges: (fleg, 775), ({deg, 753
tg-edges: t;5, (Cs, ), (7 (Cs, )

5.2. ldentifying definitions and uses of each variable

Each variable occurrence in a flow gra@h for an EFSM M is classified as being a

definition (def), computational use (c-use) or predicate use (p-use). The following conven-

tions are used to identify definitions, c-uses and p-uses of each variable.

e A variable v is said to bedefined at a t-node t if a of the EFSM’s transition
t=(q,,0,0,a,q) contains an assignment that defines

e A variable v is said to bec-usedat a t-nodet if a of the EFSM’'s transition
t=(q,i,0,g,a,q) contains an assignment that referenges

e A variable v is said to bep-usedat anit-edge (it) if g of the EFSM’s transition
t=(q,i,0,9,a,q) referencesv.

Based on the above classification, a pair of def and c-use sets is created fot-reztd
and a p-use set for eadhedge. A def sedeft) (respectively, a c-use setusdt)) is the

set of variables defined (respectively, used) at nbd& p-use setp-us€(i, t)) is the set of
variables used at edge, ¢). Table | shows the def sets and c-use sets for the flow graph
in Figure 4. The p-use sets are shown in Table II.

5.3. Identifying associations between definitions and uses

A sequence of nodesf, n,,. .., n,), m=2, is a path of flow graptG=(N, en E) if (n;,

n.,) € E, for all 1=i<m A path (, n, n,..., n, j) is a definition-clear pathwith

respect to variable from nodei to nodej, if the nodes in the subpathy. . ., n,) contain

no definition ofv. A path (, n,, n,,. .., N, j, K) is a definition-clear pathwith respect to
variablev from nodei to edge |,k), if the nodes in the subpatny. .., n,, j) contain no
definition of v.

Based on def, c-use and p-use sets, associations are identified between definitions and c-

uses and between definitions and p-uses of each variable as follows.beed node and/

be a variable such that e def(i).
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T21

(

2

» {dec})

0
<>
< (Ca, 0) >— a1 (s 0 )
{inc} {inc}
T22 (C:'u {d“}) T2

{poff} . T73 {potf}
>
—< (€4, 0) e {@ (Cs, @)7—
Ta|l6 (@b
{inc} inc}
Ta)5 (@

Figure 4. The flow graph for the revised normal form specification in Figure 3.

e dcuyv, i) is the set of all node$ such thatv e c-us€j) and there exists a definition-
clear path with respect te from i to j. A triple (v, i, j) is called adef—c-use association
if j e deulv, i).

e dpuv, i) is the set of all edgesj, (k) such thatv e p-usé(j, k)) and there exists a
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Table I. The def sets and c-use sets in Figure 4.

t-node def set c-use set

T3
Ta|5

3
N333333333
Q3 QQV3 330010

Tal6
The othert-
nodes

Table Il. The p-use sets in Figure 4.

it-edge p-use set

({coffed, 737)
({coffed, s3,)
({deg, 773
({deg, 7'83_)

The otherit-edges

Q3333

definition-clear path with respect to from i to (j,k). A triple (v, i, (j, K)) is called a
def—p-use associatioii (j, k) € dpuv, i).
e A def-use associatiors either a def-c-use association or a def—p-use association.

Table Il shows the dcu and dpu sets for the flow graph in Figure 4. For example, consider

Table lll. The dcu sets and dpu sets in Figure 4.

Node dcu set dpu set

T %] ({ coffed, 731)

Ts1 Ten T73 ({coffed, 732), ({deg,173), ({degd, 7s9)
Ts2 Tewr T2 T73 Tale ({coffed, 735), ({ded, 775), ({deg, 7g3)
Te1 Ten T73 ({coffed, 732), ({deg,173), ({degd, 7s9)
To2 Tewr T2 T73 Tale ({coffed, 735), ({degd, 775), ({deg, 7g3)
T73 Ten Te2r T73 Tale ({coffed, 732), ({deg, 173), ({degd, 7s3)
Tgs %] ({ coffed, 75,)

T45 Tern T73 ({coffed, 732), ({deg, 173), ({degd, 7s9)
T4e Tewr T73 ({coffed, 73,), ({degd, 75), ({deg, 7g3)
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the def-c-use associatiom/s,,7s,). The definition ofm at thet-node 75, can reach the use
of m at thet-node 74, through the definition-clear pathrsf, (Cs, &), {dong, 74, (C,, ),
{inc}, 76).

In general, there exist three types of associations between definitions and uses in flow
graphs constructed from statecharts. The first type includes associations between a definition
at at-nodet; and a use at d-nodet, such that the transitions and t, represent steps
occurring within the same OR-state in the original statechart, e.g. the def-c-use association
(m, 751, T61) IN Table lll. The t-node 75, represents the statechart’s transitiag inc/m:=1’
in Figure 1 andrg, representsts inc/m:=m+ 1'. Associations between definitions and uses
occurring in ordinary EFSMs belong to this type. The hierarchical and concurrent structure
on states introduces two additional types of association. The second type is caused by the
hierarchical structure on states, e.g. the def-p-use associatiprr( ({coffed, 75,)) Iin
Table lll. The t-node 7, represents t;: power-odmm:=0'" and t3; represents tg
coffe¢gm>0]/m:=0’. The definition of m at t; can reach the p-use dt because of the
hierarchical structure on states. The third type is caused by the concurrent structure on states,
e.g. the def—p-use associatiom, (7s,, ({coffe@, 3,)) in Table lll. The concurrent structure
on states allows that the definition of at ts can reach the p-use &

5.4. Selecting a set of complete paths

In conventional data flow analysis, flow graphs usually contain a set of exit nodes to model
the terminating behaviour of programs written in procedural languages. A set of complete
paths is then selected to cover associations between definitions and uses. A path in such
flow graphs is calledccompleteif the first node of the path is the entry node and the last
node is an exit node. On the other hand, there is no exit node in flow graphs constructed
from statecharts because the behaviour of statecharts is characterized by their non-terminating
runs. This leads to a modified definition for complete paths as follows. A path of a flow
graph is complete if its first node is the entry node and its last nodegsiede. That is,
eachg-node is regarded as a pseudo exit node.

A number of coverage criteria have been proposed based on data flow analysis in the
software testing literature. Rapps and Weyuker [9] proposed a family of data flow testing
coverage criteria: all-nodes, all-edges, all-defs, all-p-uses, all-c-uses/some-p-uses, all-p-
uses/some-c-uses, all-uses, all-du-paths, all-paths. It is clear that the all-nodes, all-edges, and
all-paths criteria represent the well-known statement, branch and path coverage criteria,
respectively. The all-defs, all-p-uses, all-c-uses/some-p-uses and all-p-uses/some-c-uses criteria
in general yield a set of complete paths that do not necessarily cover all associations between
definitions and uses of each variable. On the other hand, all-uses and all-du-paths criteria
cover all associations between definitions and uses of each variable. This paper shows the
application of the all-uses criterion to flow graphs constructed from statechart$s £€N,
en E) be a flow graph and® be a set of complete paths iB. P satisfies the all-uses
criterion if, for each noden € N and eachv € defn), P includes a definition-clear path with
respect tov from the noden to each element oficuv,n) and dpuv,n).

Table IV shows a set of complete paths selected by the application of the all-uses criterion
to the flow graph in Figure 4. As an example, the complete gatltovers the following
def-use associations:
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=)

Table IV. A set of complete paths satisfying the all-uses criterion in Figure 4.

P. P2 Ps Pa Ps Ps Pz
(Cl!@) (Cl!@) (Cl,@) (Cl,@) (Cl!@) (Cl!@) (CL@)
{pori { por} { por} { por} { por} { por} { por}
(C.2) (C.2) €2  (CD (o) (C.2) (C.2)

{coffed { coffeé {inc} {inc} {inc} {inc} {inc}

Ta1 T31 Ts1 Ts1 Ts51 T51 Ts1

(Co{ded)  (Cs{deq) (C.9) (Ca9) (Ca D) (Ca9) (Ca)
{deg {deg { coffed {inc} { coffeéd { coffed {inc}
(Cs2) (C2)  (Cufded)  (C,0)  (Cufded)  (Cifded)  (C,2)
{dong {inc} {deg { coffeg {deg {deg { coffeg

Ta1 T52 Tg3 T32 Tg3 Tg3 T32
(C.2) (Cs2) (C:)  (Co{ded)  (C.2) (C)  (Csfded)
{inc} {dong {'inc} {deg {inc} {inc} {deg
o W o N o) W (o S ) W ) S o

{coffed { coffeé {dong {dong {dong { doneinc} {dong

T32 T32 Ta2 Ta2 Ta2 Tal6 Ta2

(Cs{ded)  (Cs{deq) (Ca9) (Ca9) (%) (Ca) (Ca)
{deg {deg {'inc} {'inc} { coffeéd {iinc} { coffeéd

T73 773 Te1 Te1 T32 Te1 T32
(Cs.2) (3%) (C.9) (C.0)  (Cs{deg) (Ca) (Cs{deg)
{dong {'inc} {'inc} { coffeéd {deg { coffed {deg
(€.2) (C52) €2)  (Csf{ded) (C0)  (Cufded)  (C.)
{inc} {dong { coffeg {deg {inc} {deg { doneinc}

Te1 Ta2 T32 T73 Ts52 T73 Tal|5
(CaD) (Cs) (Csfdeq)  (Cs) (C.9) (Cs.9) (Ca)

{coffeg { coffed {deg {dong {inc} { doneinc} { coffeéd
(Co{ded)  (Cofded)  (Cod)  (CL&)  (Cs8)  (Cud)  (Cofded)
{deg {deg {inc} { coffeg { doneinc} { poff} {deg

Tg3 Tg3 Te2 T32 Tale T22 Tg3
(C3.9) (Cs9) C)  (Cs{ded)  (C.9) (CF%) (Cs9)
{dong {'inc} {'inc} {deg { coffeéd { doneinc}
Co)  (CD) (D) (GO (C{ded) (C.2)

{coffeé { doneinc} { dong { pofft {deg {inc}

T31 Tale Ta2 T23 T73 Te1

(C31{ dec}) (C4!@) (C41@) (Clvg) (CS!@) (C41@)
{deg { coffeq {iinc} { poff} { poff}
(C2)  (Culded)  (C2) €.2) (N2
{doneinc} {deg { poff}
&) (C) )
{coffeg { poff}
T32 T23
(Cs{deg) (CL9)
{deg
(C.2)
{poff;
T24

(Cl!@)
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(11, ({coffed, 751)), (751, ({deg, 173)), (Ts1,773), (e, ({d€G, T53)),
(783, ({coffed, 731)), (145 ({dEG, 773)), (Tais,773)

5.5. Mapping complete paths into test sequences

Like the FSM and EFSM based testing methods, the approach here uses a sequence of
inputs of a statechart as a test sequence. In deterministic FSMs and EFSMs, a sequence of
inputs corresponds to exactly one path in such models. However, the information of states
and outputs is additionally necessary to determine each path uniquely in non-deterministic
models. Because statecharts are also non-deterministic, it is required that a test sequence of
a statechart contains two more sequences of configurations and outputs in addition to a
ing/outy in,/outy in,_j/out, 4
sequence of inputs. A sequen€yg C, ce C., is atest sequencef a
statechartZ = (S ILI,V,0, T) if C; is a configuration ofZ, for all 0=j=m, andin; CII is
an input ofZ andout C IT is an output ofZ, for all 0=j=m-1. It is easy to map each
complete path of a flow graph into a test sequence by noting the configurations op the
nodes, inputs in thé-nodes, and outputs in thtenodes of the complete path. Table V shows
a set of test sequences of the coffee vending machine. Each test sequence in Table V
corresponds to a complete path in Table IV.

ing/outy in,/outy ing,_1/outy, 4
A test sequenc€, — C, — - -+ —— C,, of a statecharZ with the synchronous
time model (respectively asynchronous time modelexecutableor feasibleif there exists

/o, i/o i/o.
a run Co, Ey o) ——> (Cy, By, 03) —— (Cy, Epy 05) —— - - - iNR(M) (respectivelyRa(M))
such thati; =in; and o; =out, for all 0=j=m-1. Such a run is called aaccepting run
for the test sequence. The rest sequensgsts,, ts;, ts andts; in Table V are executable
and the following shows an accepting run fisg.

(Cy, G, [m |——>0]) werojf @ (C,, I, [m |——>0]) Pl (C4, @, [m 1]
(Cs{deg, [m I——>1]) @, Im I——»O]) 9% ¢y, @, [m 1)) “’"”i’?
{coffee}/{ deg

(Ca @, 1) (C4, 2, [m-2]) —5 (C4, @, [m —2])
(Cs.{deg, [m l——>2]) 9% . @, [m }-—»1]) 0 c. @, m2) 228
{power off/ &

(Cs @, [M3]) = (Coy @, [M-3]) s (Cay B, [m 4]
(CL @1 [m |__>4]) {power-o/ &

{coffeQ/{ deg

On the other hand, there is no accepting run for the test sequéncasdts, in Table V.
. {power-o/ & { coffeg/{dec} {deg/ i i
Consider the test sequen€g — C, —— C; — C; which is a subsequence

of both ts; andts, and covers the def-use associatiay, (coffeers,)). The variablem in
Figure 1 is assigned the value of O by the stepo{fer-oi, {t,}, &) and subsequently the
step ({coffed{ t3},¥) cannot be taken because the guardipffm> 0], is not satisfied.
The guard is satisfied only on those test sequences that include at least one occurrence
of inc preceding the first occurrence cobffee The other def-use associations covered by
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Table V Test Sequences COMng to the complete paths in Table IV.

tSl {por{/ & {coffeg/{ deg {deg/O {dong/& {incy & {coffeg/{ deg
Cl —_— C2 e 3 —— 3 —— >, — Cy —_—
{deg/ {dong/ & {incy/ & {coffed/{ deg {deg/ {dong/ <&
G —C —¢—¢C — C—C; —
{coffeg/{ deg {deg/O {doneincy/ & {coffeg/{ deg {deg/

C2 _— 3 — 3 _— 4 —_— 5 —
{poff/ &
C5 I Cl
tSz {por}y/ & {coffeg/{ deg {deg/ {incy/ & {dong/ > {coffed/{ deg
C1 —_— C2 e s — 3 —m Gy — 4 —_—
{deg/ @ {incy/ & {don&/& {coffed/{ deg {deg/ @ {incy/ &
G —GCG—CG — C — 5 — > L3
{doneincy/ & {coffeg/{ deg {deg/ {pofy/ &
C — 4 T 5 — > L3 — Ly
th, {por}y/ & {incy/ & {coffed/{ deg {deg/ {incy/ & {dong/ &
¢ —G¢G—C — 5 — > Lz Lsg —
{incy & {incy & {coffeg/{ deg {deg/ {incy & {incy &
C4 —_— C —_— C4 —_— 5 —_— C5 —_— 5 —_—
{dong/& {incy & {pofy/ &
G —C—C — C
t54 {por}y/ & {incy/ & {incy/ & {coffed/{ deg {deg/ {dong/ &

C1—>C2—>C4—>C4 —_— C5—> 5 ——
{incy & {coffeg/{ deg {deg/ {dong/> {coffeg/{ deg {deg/O

C4 _— C4 —_— 5 — 5 — 4 _— 5 —
{poff/ &

C — C

t35 {por}y/ & {incy/ & {coffed/{ deg {deg/T {incy/ & {dong/ &

C1 —_— >, — Cy e 5 —— s — Cg —

{coffeg/{ deg {deg/ {dong/ {incy & {doneincy/ &

C4 _— 5 — 3 — 3 — 5 _—
{coffeg/{ deg {deg/O {poff/ &
C4 — 5 — 5 — 1
t56 C {por}y/ & C {incy/ & {coffed/{ deg {deg/& {incy/ & {doneincy/ &
. >, — Cy e 5 —— s —— Cg —
{incy & {coffeg/{ deg {deg/ {doneincy/ & {pof/ &
C, — C, 5 5 4 1
tS7 C {por}y/ & {incy/ & {incy/ &} {coffeg/{ deg {deg/ {dong/ &
. 5 — g — 4 —_— 5 — 5 —
c {coffeg/{ deg {deg/O {doneincy/ & {coffeg/{ deg {deg/
4 _— 5 — 3 _— 4 —_— 5 —
{doneinc}y/ & {incy & {pofy &
CG — 4 Lg — U1

the unexecutable test sequendssand ts, cannot also be covered by any executable test
sequence. Such def-use associations are called unexecutable, and thus will not be covered
by the selected test sequences. In fact, the coverage of the executable def-use associations
is advocated by Frankl and Weyuker [8] in the definition of the applicable versions of the
data flow oriented test selection criteria of Rapps and Weyuker [9].

As a technical convenience, the method described here assumed that each variable appearing
in statecharts has only one initial value. It is straightforward to deal with statecharts with
multiple initial states, because the transformation methods from statecharts to EFSMs and
from EFSMs to flow graphs do not depend on the values of variables. Now a test sequence
of statecharts requires the selection of initial values for variables as well as the identification
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of input, output and configuration sequences. The selection of initial values can be carried
out by applying symbolic execution techniques to statecharts. Symbolic execution derives
path conditions that consist of a system of inequalities on variables and hence can be used
to find initial values that will drive a statechart along a particular test sequence. Although
the solution to the system of inequalities provides a set of ranges of values for the variables
occurring in the inequalities, specific values for these variables must be determined for the
construction of an executable test sequence. Clearly, this is a relatively easy activity.
However, in order to increase the error detection capability of a collection of test sequences
and to obtain a definite fault coverage, the selection of values for variables must be based
on a fault model. Such fault models must be formed for particular application domains,
which is still an open problem. Moreover, the fault detection ability of particular collections

of test data must be studied. Such studies can be formulated on the basis of the work
proposed in Reference [26] that addresses the subdomain based test selection criteria. That
is, a test selection criterion is viewed as a means of identifying subdomains of the input
domain of a system where each test unit that must be covered identifies a subdomain of the
input domain. The test selection criteria are then compared for relative effectiveness of fault
coverage on the basis of their respective collections of subdomains.

6. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated that conventional data flow analysis techniques can be applied
to the selection of test sequences from specifications written in statecharts. A method is
proposed that transforms a given statechart to an EFSM, called a normal form specification,
containing all the possible runs of the statechart. The transformation method combined with
the existing method of Uraét al, which transforms an EFSM into a flow graph, enables

the association of a flow graph with a statechart that models the flow of both control and
data in the statechart. A set of test sequences is selected from the resulting flow graph to
cover all associations between definitions and uses of each variable appearing in the original
statechart. These test sequences allow one to determine whether an implementation establishes
the desired associations between definitions and uses expressed in the statechart.

The test sequence selection method can be fully automated. The research group of Ural
et al. has already developed a toolset that automates the construction of flow graphs from
EFSMs and the test sequence selection from flow graphs. Therefore, the only remaining task
is the automated construction of EFSMs from statecharts. For that purpose the authors are
currently investigating the use of library functions in the STATEMATE toolset for information
retrieval of statecharts written using the STATEMATE editor. In addition to the test sequence
selection, the determination of the executability of test sequences and variable values that
make test sequences executable are mandatory for the whole test selection for statecharts.
The application of symbolic execution techniques to statecharts is a prerequisite for supporting
the determination.

Future work includes the development of methods for the selection of test sequences from
statecharts with the complete set of language constructs provided in STATEMATE and with
other semantics. The RSML semantics proposed by Levegoal [27] is close to the
asynchronous time model of the STATEMATE semantics. Slight modifications to the test
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sequence selection method proposed in this paper would suffice for the RSML semantics.

For other statecharts semantics, significant changes would be necessary to reflect the different
characteristics of the step construction method in these semantics. Other future work includes

the development of normal form specifications for statecharts with real-time features such as

timeout events and scheduled actions [10] and transitions with time intervals [28].

An interesting future research issue is the granularity of the single execution unit of
statecharts. In general, there are three candidates that may be used as the single execution
unit: transition, step and super-step. This paper implicitly assumed that step is the single
execution unit and the flow of control and data was traced between steps. Alternatively,
super-step may be used as the single execution unit. Many statecharts semantics are based
on the synchrony hypothesis [23], which assumes that the response of a system to an
external input is completed before another external input arrives. The asynchronous time
model of the STATEMATE semantics fulfils the synchrony hypothesis because external
events can be introduced only in stable states, while the synchronous one does not. It may
be more natural to use super-step in the asynchronous time model rather than step as the
single execution unit if one is only interested in tracing the flow of control and data between
a system and its environment. Transition cannot be used as the single execution unit in the
STATEMATE semantics. However, in statecharts with interleaving semantics [28] or the
UML semantics [25], at most one transition may occur at any instant of time, and hence
transition is the single execution unit. Statecharts with such semantics are of special interest
because the transition explosion problem can be reduced in them.
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