Test cases generation from UML state diagrams
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Abstract: The paper discusses the application of state diagrams in UML to class testing, A set of
coverage criteria is proposed based on control and data flow in UML state diagrams and it is
shown how to generate test cases satisfying these criteria from UML state diagrams. First, control
flow is identified by transforming UML state diagrams into extended finite state machines
(EFSMs). The hierarchical and concutrent structure of states is flattened and broadcast commu-
nications are eliminated in the resulting EFSMs. Second, data flow is identified by transforming
EFSMs into flow graphs to which conventional data flow analysis techniques can be applied.

1 Introduction

Classes encapsulate both data (attributes) and procedures
(member functions, methods) and are the basic building
blocks in object-oriented software development. In addi-
tion, a class is often considered to be a basic unit of testing
in the object-oriented testing literature. Several research
efforts have been made at the systematic testing of classes
and many of them are specification based using algebraic
specifications or model-based specifications. They
normally involve the generation of test cases as sequences
of messages from the specifications [1-5]. Recently,
several researchers have proposed using finite state
machines (FSMs) in class testing [6-9].

This paper discusses the application of state diagrams in
Unified Modeling Language (UML) [10] to class testing.
UML combines the three popular approaches of Booch
[11}, Rumbaugh [12], and Jacobson [13] and has been
accepted by the OMG as an industry standard for object-
oriented analysis and design notation. I comprises a
number of diagrams wvsed to describe different aspects of
a system including static, dynamic, and use-case views.
Among them, this paper focuses on test cases generation
from state diagrams in UML. UML state diagrams are
widely used for specifying the dynamic behaviour of
classes and are substantially based on Statecharts [14]
which have been successfully applied to reactive systems.
UML state diagrams provide several concepts that distin-
guish themselves from conventional FSMs. These include
the hierarchical and concurrent structure of states, the
communication mechanism through events broadcasting,
and the actions associated with states and transitions.

An integral part of class testing is the construction of test
cases as sequences of messages from a given specification.
Because there exists an infinite number of possible
sequences of messages, exhaustive testing is impossible
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to achieve and we need to have systematic coverage criteria
which select a reasonable number of message sequences
satisfying certain conditions. In this paper, a method is
presented that involves the application of conventional
control and data flow analysis techniques to the generation
of test cases from UML state diagrams.

After describing work related to class testing, we briefly
review the syntax and semantics of UML state diagrams. As
our main result, we show how UML state diagrams can be
transformed into a form to which conventional flow analysis
techniques can be applied. A method is given that generates
test cases based on control flow in UML state diagrams. We
transform UML state diagrams into extended FSMs
(EFSMs) to flaiten the hierarchical and concurtent structure
of states and eliminate broadcast communications in UML
state diagrams. Control flow in UML state diagrams is
identified in terms of the paths in the resulting EFSMs. We
then transform EFSMs into flow graphs. All the associations
between definitions and uses employed in UML state
diagrams can be identified in the resulting flow graphs.
The transformation enables us to apply conventional data
flow analysis techniques to the generation of test cases based
on data flow in UML state diagrams.

2 Related work

Flow analysis has been extensively used in conventional
program testing and analysis. Flow graphs are often used
as a graphical representation of a program’s structure. The
nodes of a flow graph are a block of statements and the
edges indicate possible flow of control between nodes.
Based on flow graphs, control flow analysis encodes
pertinent and possible program flow of control and data
flow analysis ascertains and collects information about the
possible modification, preservation, and use of variables in
a computer program [15]. When applied to specifications
rather than programs, they can also provide useful infor-
mation for the specifications. In protocol conformance
testing, several researchers have proposed the use of flow
analysis for the systematic generation of test cases from
ESM-based specifications [16]. Recently, the idea of speci-
fication slicing, which is a generalisation of program
slicing, was introduced in [17] and refined and extended
in [18, 19]. In specification slicing, flow analysis is done on
specifications to identify dependencies among entities in
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the specifications. Al! these applications show that flow
information in specifications can be effectively used in
validating and debugging specifications and generating test
cases from specifications,

In the last two decades, a number of techniques have
been proposed for class testing and many of them model
classes using abstract data types using algebraic specifica-
tions or model-based specifications. Algebraic specifica-
tions consist of signatures defining the syntactic properties
and axioms describing the properties of member functions.
Model-based specifications describe the precondition and
postcondition of each member function using well defined
mathematical models such as functions, sets, and
sequences. In [1-3], test cases are generated as sequences
of member functions based on the axioms in algebraic
specifications. Since member functions are treated as a
mathematical mapping without side effects in algebraic
specifications, interaction between attributes and member
functions cannot be explicitly tested in these approaches.
Zweben et al. [5] applied conventional flow graph based
testing techniques to class testing. In their approach, a flow
graph is associated with each class using model-based
specifications. A node in the flow graph represents a
member function and an edge between node A and B
means that it is permissible to invoke A followed by B.
Determining whether an edge exists is based on the
precondition and postcondition of each member function.
Then test cases are generated based on control and data
flow in the resulting flow graphs. Parrish ef al. [4} extended
Zweben et al.’s work so that a flow graph can be obtained
with or without specifications. When, in the absence of
specifications, there exists an edge for every pair of nodes
then all sequences of messages are assumed to be feasible.

In general, FSM models of software abound in the testing
literature [20]. Since Chow’s proposal [21], various FSM-
based testing techniques have been proposed especizlly in
protocol conformance testing [16, 22]. Formal description
techniques such as SDL, Estelle, and Lotos have been
extensively used for specifying communication protocols
and a great deal of attention has been given to the generation
of test cases based on control and data flow in these
specifications. However, the application of FSMs to class
testing is a relatively new concept {69, 23]. The state-based
approaches to class testing concentrate on the interaction
occurring between the attributes and the member functions
of classes. They show that FSMs can be effectively used to
test this interaction by representing the values of attributes as
the states of FSMs and the member functions as the transi-
tions of FSMs. In [6, 8, 9, 23], they considered state
machines in which transitions are associated with an
enabling predicate and an action and generated test cases
based on control flow [8, 9, 23] and data flow [6]. This paper
extends this work by applying UML state diagrams, which
have several distinguishing features from FSMs {in addition
to the FSM features), to class testing. Kung et al. [7]
proposed a class testing technique using a variation of
Statecharts, called object state model (OSD). They extract
OSD directly from source codes and generate test cases by
constructing a spanning tree from OSD. In contrast, we
regard UML state diagrams as class specifications and
propose a hierarchy of coverage criteria for UMI. state
diagrams based on control and data flow information.

3 UML state diagrams

State diagrams in UML. are used to show the states an
object can have during its life, and the events that cause the
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Fig. 1 Example of a UML state diagram

state to change along with its responses. The notation and
semantics of UML state diagrams are substantially based
on Statecharts modified to include object-oriented features.
Fig. 1 shows a UML state diagram for a simple coffee
vending machine where m is a synonym for money and [/
for light.

The set of states in UML state diagrams represents both
basic states and composite states which contain other states
as substates. A composite state is classified as either an or-
state or an and-state. An or-state has substates that are
related to each other by an exclusive-or-relation. In Fig. 1,
the state CVM consists of OFF and ON with OFF as the
default state. Being in CVM implies being in OFF or in ON,
but not in both. An and-state has substates, called ortho-
gonal components. Being in the and-state ON implies being
in COFFEE and MONEY simultaneously, Siates can have
actions associated with them. Actions are performed in
response to events received while the object is in the state,
without changing the state. Three reserved events are used
in the action compartment: entry, exif, and do. The entry
event (resp. exit event) is used to specify actions performed
at the entry of a state (resp. on exit from a state), The do
event is used to specify an action performed while in a
given state. For example, the state BUSY has a4, ay, and as
as entry, do, and exit actions, respectively.

Transitions in UML state diagrams are represented by
arrows between states and are labelled by event [guard]/
action send. We classify events into external events that
are generated by the environment of an object, i.e. other
objects, and internal events that are generated by the object
itself. In Fig. 1, the event dec is assumed to be internal and
all the other events are external. A special event, fm(inter-
val), is used to represent the passage of a period of time.
Guard is a Boolean expression that must be satisfied for
the transition to occur, Action is a list of operations
executed as a result of the transition being taken and is
assumed to be atomic. Send is a list of events generated
when the transition is fired.

The semantics of UML state diagrams is based on the
notion of steps. External events generated by the environ-
ment of an object are accepted by an events queue. The
semantics assumes that the events in the queue are
processed in sequence one gt a time. Once an event is
dispatched, one or multiple transitions may be enabled.
The state machine selects and fires a maximal set of
enabled transitions that are mutually nonconflicting. This
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basic transformation is called a step. Actions that result
from taking a transition may cause events to be generated
for this and other objects. Events for the object are broad-
cast within the present state diagram. Afier a previous step
has completed, the next external event in the queue is
dispatched to the state diagram.

We will use the following notdtion, largely based on
[24]. Let States and Trans be the finite set of states and
transitions in UML state diagrams, respectively. Let
p:States — 255 be the hierarchy funciion which gives,
for each state, the set of its substates. For a state s € States,

(s) denotes the least set SC States such that se§ and
p Yes for all § ES, and pT(s) denotes the set
p)—1st.Hsep (sz) then we say that s, is a descen-
dant of 55, and s, is called an ancestor of 5, and that s; and
85 are gueestrally related. If, in addition, s, % 5o, then s, is
a strict descendant of s> and s, is a strief ancestor of ;.
There is a unique state r ¢ States, such that p"(r) = States,
called the roof state. For a state s € Stafes, we use enfry(s),
do(s), and exit{s) to denote the entry, do, and exit action
associated with s, respectively.

A configuration is the maximal set of states which a
system can be in simultaneously. Precisely, CC States is
called a configuration if (i) C contains the root state; (ii) for
every and-state, s, either s and all substates of s are in C, or
they are all not in C; (iii) for every or-state s, either s and
exactly one substate of s are in C, or s and all substates of s
are not in C. The default completion (if it exists) of a set of
states § € States, denoted by complete(S), is defined as the
configuration € containing S such that, for every or-state
s € C such that s is not a strict ancestor of S, the default
substate of s is also in C.

For a transition ¢ € Trans, we use source(t) and fargei(t)
to denote the set of source and target states of ¢, respec-
tively. We use eveni(f), guard(?), action(r), and send(f) to
denote the components of the transition’s label. The scope
of a transition #, denoted by scope(r), is defined as an or-
state such that scope(?) is a strict ancestor of all the states in
source() W rargei(r), and every such or-state is an ances-
tor of scope(r). We say that two transitions conflict if their
scopes are ancestrally related.

4 Generating test cases based on control flow

To flatten the hierarchical and concurrent structure of states
and eliminate broadcast communications in UML state
diagrams, EFSMs are used as intermediate forms in the
transformation. An EFSM is a tuple (GStates, Co, GTrans)
where GStates is a set of global states, Cy € GStates is the
initial global state, and GTrans is a set of global fransi-
tions. From a given UML state diagram, we identify an
EFSM as follows. First, the set of global states GStates
corresponds to the set of configurations in UML state
diagrams. For example, there are five configurations in
Fig. 1 and these constitute the global states of the EFSM in
Fig. 2

For the formal description of global transitions, we adopt
the following notation.

e The greafest departing siate of a transition ¢, denoted
by gds(), is a state s such that source(f)< p'(s),
target(f) € p'(s), and every such state is a descendant of
s. The departing states of f, denoted by DS5(r), is defined as
a set of states p (gds(r}).

e The greatest arriving stafe of a transition ¢ denoted by
gas(f), is a state s such that source(t)Zp “s),
targel() C p'(s), and every such state is a descendant of
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Fig. 2 Example of an EFSM

s. The arriving states of ¢, denoted by AS(Y), is defined as a
set of states p (gas(D)) N complete(targel(t)).

For example, gds(f}=OFF, DS(#;)={OFF}, gas(t;)=
ON, and A4S5(t;})={ON, COFFEE, IDLE, MONEY,
EMPTY).

e Let C be a configuration and e be an event. We say that a
transition ¢ is enabled in C with the event ¢, if source(f) € C
and event(y=e. We say that a set of transitions 7T is
enabled in C with the event e if every fransition in 7T is
enabled and no two transitions in 7 conflict, In addition, we
say that T is maximal if every fransition not in T but
enabled in C conflicts with some transition in 7.

A global transition gt in an EFSM is a tuple (C, e, g, , C)
such that C, C’ & GStates and there exists a set of transi-
tions TC Trans in UML state diagrams satisfying:

e Tis enabled in C with the event e and is maximal.

o C'=(C — Urer DSO)U Uy rAS().

o g=|)ierguard(s).

L7 UTE TA](!)UAz(f)UA3(I), where AI(I):
Usepspsecexit(s), Ay()=action(r), and 43()=
Us e 455 « ¢ entry(s). Note that 4,(7) is the set of all exit
actions executed by the occurrence of transition 7, Simi-
larly, A5(7) is the set of all entry actions execuied by the
occurrence of transition £

We say that a global transition represents a set of transi-
tions T in UML state diagrams. Infuitively, a global transi-
tion is a set of transitions that are executed by the
occurtence of one event, For example, consider the event
peower-on and the configuration Cy = {CVM, OFF} in Fig. 1.
We have a global transition gt; =(C:, power-on, lrue,
money =0, C;) in Fig. 2. For another example, consider
the event power-gff and the configuration C3. We have a
global transition gty = (Cs, power-off, frue, light = off, 1)
because 1, exists from the state BUSY whose exit action is
light = off’

The entry and exit actions associated in UML state
diagrams are included in the actions of global transitions
in EFSMs. Now we introduce a special type of global
transitions that represents the behaviour of do actions in
UML state diagrams. For each global state C, we have a
global transition gt, =(C, e, g, a, C») such that
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* C1 = Cz =C.

® ¢ =/, where / 15 the null eveni.

® g={rue.

o @ = c e dols), 1.e. where a is the set of all do actions in

The global transition gf, means that the set of do actions in
a global state C is performed repeatedly as long as the class
is in the global state. For example, we have two global
transitions gf,; and gt,» for the global states C; and Cs,
because C; and Cs include the state BUSY whose do
action is light =light

Remark 1. (Enabledness) When simulating or generating
reachability graphs using UML state diagrams, the
enabledness should be determined by the current values
of the variables as well as the current configuration.
However, we do not consider the values of the variables
because our work centres on identifying possible control
and data flow.

Remark 2. (Igroring broadecasting) When defining
global transitions, we eliminate the broadcasting through
internal events by treating external and internal events in
the same way. This elimination is conservative in the sense
that the transformed EFSMs include all the possible
execution sequences in UML state diagrams.

Control flow in UML state diagrams is identified in
terms of the paths in EFSMs, Let < GStates, Cy, GTrans >
be an EFSM. Let gs; € GSiates and gt;={C,, e; g an
C) e Glrans for 0<<i<n. A sequence (gso, gfo), (g51,
gty), - . (8., gt,) is called a parh if gso = Co, g5, = C,, and
for0<i=n-—t,gs;=C;and gs; | =C’;. In general, there
are infinitely many paths in EFSMs and hence it is
impossible to cover all these paths. We explore the follow-
ing coverage criteria out of a potentially infinite family of
criteria. Let P be a set of paths.

e P satisfies path coverage if P contains all possible paths
through EFSMs. This is the strongest criterion and gener-
ally impossible to achieve.

« P satisfies state coverage (resp. global state coverage) if
P includes every s € Stafes (resp. gs € GStates).

o P satisfies transition coverage {resp. global transition
coverage) if P includes every ¢ € Trans (resp. gt € GStates).

Test cases satisfying these criteria can be constructed in
terms of simple breadth or depth first searches over
FEFSMs. The following shows a test cases generation
method for global state coverage by traversing EFSMs in
the breadth first order. We can similarly define the methods
for generating test cases satisfying other coverage criteria.
Let {GStates, Co, GTrans) be an EFSM. -

make_state_coverage_testing_tree (Node)

begin
if all gs € GStates are visited then return;
for cach gt =(C,, &, gy, a5, C) € GTrans do begin
if C;=Node and C’; is not visited then
make C; as a child of Node;
end
for each child cNode of Node do
make_state_coverage_testing_tree(cNode)
end

For exampie, Fig. 3 shows the testing tree constructed by the
above algorithm in which the set of paths {p,, p»} such that
P1=(C1, gt), (Cs, gta1) and p>=(Cy, gh), (G, gt1), (Ca,
gts;) satisfies global state coverage, The path p; in the EFSM
corresponds to the message sequence of (power-on, coffee)
in the UML state diagram of Fig. 1 and the path p, corre-
sponds to the message sequence (power-on, inc, caffee). By
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Fig. 3 Example of testing trees

sending these message sequences to the class (more
precisely, an object instantiated from the class), we can
traverse all the global states of the coffec vending machine.

In general, certain paths in EFSMs may be unexecutable
or infeasible. For example, the path p; =(Cy, gt1), (o,
gts) is infeasible because the value of money is set as 0 by
gty and thus the enabling condition ‘money> 0" of gty
cannot be satisfied. Of course, the selection of feasible
paths is undecidable, thus making the application of these
criteria undecidable.

5 Generating test cases based on data flow

Data flow in conventional programs is based on the notions
of definitions and uses of variables in the statements. In
UML state diagrams, variables can be defined and used in
the actions of states and in transitions.

e A variable x is defined {1esp. used) in an action a of a
state if a assigns a value to x (resp. references x).

e A variable x is defined (resp. used) in a transition ¢ if
action(f) assigns a value to x (resp. guard(l) or action(?)
references x).

For example, Table 1 shows the definitions and uses of the
variables money and light in Fig. 1.

Let {(GStates, Cy, GTrans) be an EFSM. Let gr=(C, e,
g, a, C')e GTrans such that gt represents a set of transi-
tions T in UML state diagrams. Recall that g is the
conjunction of the guards of the transitions in T and « is
the union of the actions of the transitions in T"and the entry
and exit actions that are executed by T.

s We say that a variable x is defined in gf € GTrans if x is
defined in at least one of the actions in a.

* We say that a variable x is used in gf € GTrans if x is used
in at least one of the guards in g or the actions in a.

Table 1: Definitions and uses of the variables in Fig. 1

Definitions Uses

a light @

a iight light
as fight ¢

t money ¢

[ ¢ ¢

I3 ¢ money
t ¢ #

Is money ¢

& mongy mongy
& money money
s money money
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Table 2: Definitions and uses of the states in Fig, 1

Transitions Definitions Uses

fy All the states in Fig. 1 OFF, CVM

b All the states in Fig. 1 ON, CVM

i COFFEE, IDLE, BUSY, IDLE, COFFEE, ON, CVM

ty COFFEE, IDLE, BUSY BUSY, COFFEE, ON, CVM

is MCNEY, EMPTY, NCTEMPTY EMPTY, MONEY, ON, CVM

o b, Ig MONEY, EMPTY, NOTEMPTY NOTEMPTY, MONEY, ON, CVM

In addition to variables, UML state diagrams introduce a
new type of data flow, which we call data flow through
states. In UML state diagrams, both states and variables
can affect the occurrence of transitions in the same way.
That is, the precondition and postcondition of a transition
are defined in terms of its source and target states as well as
the values of variables. Precisely, data flow through states
is defined as follows:

e A state s is defined in a transition # if s is a descendant of
scope(t), i.e. s € p°(scope()).

e A state is used in a transition ¢ if s is an ancestor of the
source state of 2, i.e. source(r) € p’(s).

Table 2 shows the definitions and uses of the states in
Fig. 1. Consider the transition #; in Fig. 1. Since
scope(ts) = COFFEE, we say that COFFEE, IDLE, and BUSY
are defined by #;. Intuitively, COFFEE and its children can be
changed by f; while the states outside COFFEE are not
changed by #;. We say that IDLE, COFFEE, ON, and CVM are
used by t;, because source(t;) =IDLE. The source siates
and all of their ancestors are the precondition of transi-
tions, i.e. they should be included in the current config-
uration for the transition to occur.

Let (GStates, Cy, GTrans) be an EFSM, Let gr be a
global transition representing a set of transitions 7in UML
state diagrams.
¢ We say that a state s is defined in gre GTrans if x is
defined in at least one transition re 7.

o We say that a state s is used in gr € GTrans if x is used in
at least one transition re T,

Now we transform EFSMs into flow graphs. A flow graph
is a tuple (V) N, E, def, use) such that

e Vis a set of variables and states in UML state diagrams.
o N=N;UN, is a set of nodes. Each node in N, is called an
s-node and each node in ¥, is called a f-node.

o E=FE, UE, is a set of edges such that E,C {(s,
DISEN, teN} and E,C{{t, s)|teN, seN,}.

o def: N— 2" identifies the variables and states defined for
each node.

» use: N— 2V identifies the variables and states used for
each node.

From a given EFSM (GStates, Cy, GTrans), we identify the
flow graph as follows:

o N,= GStates.

o N,=GTrans.e For each global transition gt;=(C,, e;, g
a; C/Ye GTrans, we have two edges e, and e, such that
e =(Cy, gt) € E;; and e2=(g#;, C) €E,s.

o For s e N,, def (s)=¢.

e For t € N,, def{?) is the set of all the variables and states
defined in 7.

¢ For s € N,, use(s) = ¢.

e For ¢ € N,, use(?) is the set of all the variables and states
used in 1.

{EE Proc.-Sofiw., Vol. 146, No. 4, August 1999
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Fig. 4 Parr of a flow graph

Fig. 4 shows the part of the flow graph which is identified
by considering Cy4, Cs, gt32, and gt in Fig. 2.

Now we can readily generate test cases based on data
flow from UML state diagrams by apply conventional data
flow analysis techniques to the resulting flow graphs. We
can also reuse a number of coverage criteria that have been
extensively studied and compared in the festing literature
such as all-definition, all-use, and all def-use paths cover-
age [25, 26). By applying existing data flow techniques and
coverage criteria, we can generate test cases as a set of
paths that cover the associations between definitions and
uses of each variable and state in UML state diagrams. For
example, in Fig. 4 we can identify two def-use associations
of light: (gts2, gt.») and (gt., gf.2). That is, the definitions
in gt and gt can reach to the use in gt,». A path (C),
gh), (Ca, gtsr), (Ca, gtaz), (Cs, glaz)s (Cs, glq2), Which
corresponds to the sequence of (power-on, inc, coffee, a,,
a,) in Fig. 1, can be used as the test case that covers these
associations. Table 3 shows all the def-use associations of

Table 3: Def—use associations of the variables in Fig. 1

Variables Defs Uses
light Gl [/ %]
gteﬂ Qfa!
fo 5 e} 2]
[e17% [}73)
mongy gh ol %
Gls1 G2, Gls1. Qlrv. Qlor, Glsz, Qlz2, Gloe
Gls1 Gtao, Gles, G, Olr, Glso, Glzo, Jlo
[eled} sz, gle1. G, Glsr, Glsa, Glro, Gl
Gl [l
Qls2 1. Gtr1, Glers o2, Otz2, Glaz
o]0 Olsi, Gt1, Glsis Gl o, Gleo
gitr2 Olg1, Ghr1, Ol Olez, Ola, Olgo
Olgz Glas
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light and money in Fig. 1. We can identify the def-use
associations of money such as (g¢,, g#1,) that occur because
of the hierarchical structure of states and (gt¢<(, gf;) that
occur because of the concurrent structure of states in UML
state diagrams.

6 Conclusions and future work

We have presented a specification-based approach to class
testing using UML state diagrams. We have proposed a
transformation method from UML state diagrams into
EFSMs and flow graphs and showed that conventional
flow analysis techniques can be applied to test cases
generation from UML state diagrams. Using the transfor-
mation we can flatten the hierarchical and concurrent
structure of states and eliminate broadcast communica-
tions, while preserving both control and data flow in UML
state diagrams. The resulting set of test cases provides the
capability of checking that classes are correctly implemen-
ted against specifications written in UML state diagrams by
testing whether class implementations establish the desired
control and data flow specified in the specifications.

There are several areas that we are currently working on.
In [23, 27, 28], tool support for object-oriented testing is
discussed including specification editing, test cases genera-
tion, and test cases execution and validation. This paper
discusses a method for the generation of test cases only and
thus an automated environment would be needed to
support the total process of class testing, In particular,
when executing test cases and wvalidating test results, we
should resolve two technical issues of controllability and
observability of class implementation states [29].

Second, this paper focuses on unit testing of classes and
does not consider interrelationships between classes. In
[30, 31], object-oriented integration testing techniques are
discussed in which object-oriented testing is partitioned
mainly into the following levels: classes, clusters, subsys-
tems, and systems. In UML, state diagrams can be used as
specifications in all of the four levels. We are planning to
exiend the work here to support object-oriented integration
testing using UML state diagrams. In addition, UML
provides three diagrams to specify communications
between classes: sequence, collaboration, and activity
diagrams. Testing techniques using these diagrams
should be developed to complete the testing of dynamic
behaviour specified in UML.

The final issue involves the testing of generalisation and
specialisation of classes through inheritance. In [32],
McGregor and Dyer discussed how to incrementally
build Statechart-like specifications for a class from the
specifications of its super classes. In [33, 34], the authors’
exploited the hierarchical nature of the inheritance relation
to test related groups of classes by reusing the testing
information for a super class to guide the testing of a
subclass. Combining this work with our work would
provide a method appropriate for testing derived classes
obtained by inheritance using UML state diagrams.
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